Adaptive and Learning Agents Workshop

Proceedings of ALA 2016

May 9-10, 2016

TABLE OF CONTENTS

Papers accepted as LONG presentation

Autonomous UAV Landing in Windy Conditions with MA P-FElites
S.A. Adibi, S. Forer, J. Fries, and L. Yliniemi 4

Dynamic Economic Emissions Dispatch Optimisation using Multi- Agent Reinforcement Learn-
mng

P. Mannion, K. Mason, S. Devlin, J. Duggan, and E. Howley 12
Avoiding the Tragedy of the Commons using Reward Shaping

P. Mannion, S. Devlin, J. Duggan, and E. Howley 20
Collaboration in Ad Hoc Teamwork: Ambiguous Tasks, Roles, and Communication

J. Grizou, S. Barrett, P. Stone, and M. Lopes 29
Half Field Offense: An Environment for Multiagent Learning and Ad Hoc Teamwork

M. Hausknecht, P. Mupparaju, S. Subramanian, S. Kalyanakrishnan, and P. Stone 36
Deep Imitation Learning for Parameterized Action Spaces

M. Hausknecht, Y. Chen, and P. Stone 43
Optimal Adaptive Market-Making with Inventory: A Symbolic Closed-form Solution

S. Kinathil, S. Sanner, S. Das, and N. Della Penna 50

Multiplayer Ultimatum Game in Populations of Autonomous Agents
F.P. Santos, F.C. Santos, F.S. Melo, A. Paiva, and J.M. Pacheco 58

Limits and Limitations of No-Regret Learning in Games
B. Monnot and G. Piliouras L L o 66

New Game-theoretic Anti-Poaching Solution Methods for Wildlife Protection
T.H. Nguyen, A. Sinha, S. Gholami, A. Plumptre, L. Joppa, M. Tambe, M. Driciru, F.
Wanyama, A. Rwetsiba, R. Critchlow, and C.M. Beale 74

Papers accepted as SHORT presentation

Applying Multi-Agent Reinforcement Learning to Watershed Management
K. Mason, P. Mannion, J. Duggan, and E. Howley 83

Feature Selection as a Multiagent Coordination Problem
K. Malialis, J. Wang, G. Brooks, and G. Frangou 91

Human Guided Ensemble Learning in StarCraft
T. Verstraeten, R. Radulescu, Y. Jadoul, T. Jaspers, R. Conjaerts, T. Brys, A. Harutyun-
yvan, P. Vrancx, and A. Nowé e 99

Learning Agents for Iterative Voting
F.S. Perotto, S. Airiau, and U. Grandi. 106

Mobility Effects on the Evolution of Co-operation in Emotional Robotic Agents
J. Collenette, K. Atkinson, D. Bloembergen, and K. Tuyls 114

TLDA: Transfer Learning via Domain Adaptation in Continuous Reinforcement Learning
Domains

F. Shoeleh and M. Asadpour e 122
Work in Progress and Outlook papers
Reinforcement Learning from Demonstration and Human Reward

G.Liand B. He e 130

Work in Progress: Lifelong Learning for Disturbance Rejection on Mobile Robots
D. Isele, J.M. Luna, E. Eaton, G.V. de la Cruz, J. Irwin, B. Kallaher, and M.E. Taylor . . 136

Outlook: Using Awareness to Promote Richer, More Human-Like Behaviors in Artificial
Agents
L. Yliniemi and K. Tumer

Autonomous UAV Landing in Windy Conditions with
MAP-Elites

Sierra A. Adibi
University of Nevada, Reno
sierra.adibi@gmail.com

Jeremy Fries
University of Nevada, Reno

friesjeremy@gmail.com

ABSTRACT

With the recent increase in the use of UAVs comes a surge of in-
experienced aviators, who may not have the requisite skills to re-
act appropriately if weather conditions quickly change while these
UAVs are in flight. This creates a dangerous situation, in which the
pilot cannot safely land the vehicle. In this work we examine the
use of the MAP-Elites algorithm to search for sets of weights for
use in an artificial neural network which directly controls the thrust
and pitching torque of a simulated 3-degree of freedom (2 linear, 1
rotational) fixed-wing UAYV, such that it obtains a smooth landing
profile. We then examine the use of the same algorithm in high-
wind conditions, with gusts up to 30 knots.

Our results show that MAP-Elites is an effective method for
searching for control policies, and by evolving two separate con-
trollers and switching which controller is active when the UAV is
near ground level, we can produce a wider variety of phenotypic
behaviors. The best controllers achieved landing at a vertical speed
of less than 1 [m/s], and at an approach angle of less than 1 degree.

Categories and Subject Descriptors

1.2.6 [Computing methodologies]: [Artificial intelligence]—Learning

General Terms

Algorithms, Experimentation, Performance

Keywords
MAP-Elites; Unmanned Aerial Vehicles

1. INTRODUCTION

In recent years, Unmanned Aerial Vehicles (UAVs) have seen a
surge in popularity in a wide range of applications, from military to
recreational, due largely to their expanding capabilities. With this
rise in popularity comes a drastic increase in the number of aircraft
piloted by inexperienced operators and a higher rate of incidents
involving unmanned craft [23].

In order to mitigate some of the risk brought on by the pro-
jected 1.6 million UAVs sold to hobbyists in 2015, the Federal
Aviation Administration (FAA) implemented a series of regulations
designed to promote safety in the United States’ airspace [2]. De-
spite these efforts, licenses are not required for hobbyists operating
small UAVs. When the tactical understanding of flight mechanics
that comes with pilot training is absent, further safety precautions
are necessary.

Scott Forer
University of Nevada, Reno
sforer580@gmail.com

Logan Yliniemi
University of Nevada, Reno

logan@unr.edu

Human error is well understood to be a contributing factor in
the majority of aviation accidents [19, 25], and for inexperienced
pilots, adverse weather conditions significantly increase the risk of
incident [11]. In particular, landing a fixed-wing aircraft in high-
wind conditions can cause a significant number of problems for a
pilot who is not familiar with the appropriate procedures [1]. For
those UAV hobbyists seeking the longer range and higher speeds
offered by fixed-wing aircraft, these difficulties can translate into
very distinct risks.

In this work, we use a model of this scenario as a challenging
testbed for examining the use of the MAP-Elites algorithm [21] to
search for successful control policies for autonomous landing, even
in high-wind situations. Our model consists of a three degree of
freedom (DOF) physics-based flight simulator (two linear DOF, x
and z, and one rotational DOF about the centroid of the wing of the
UAV, ¢) over the Euclidean plane. With further study, this could be
developed into a system which would help mitigate the risks from
inexperienced pilots in the case of a difficult landing scenario.

The major contributions of this work are to:

o Investigate the use of the MAP-Elites algorithm in a highly
dynamic UAV control environment including gusting wind.

e Develop a method for improving the phenotypic diversity
discovered by the MAP-Elites Algorithm through near-ground
control switching (NGCS).

e Provide a set of recommendations for choosing phenotypes
for MAP-Elites in highly dynamic problems.

The rest of this paper is organized as follows: Section 2 de-
scribes the necessary background on Artificial Neural Networks,
MAP-Elites, and flight mechanics. Section 3 provides the details
of the physics-based flight simulator we used. Section 4 describes
our simulator verification process. Section 5 describes the exper-
imental parameters for the flight simulator and MAP-Elites in this
work. Section 6 presents our experimental results for UAV control
with MAP-Elites in no- and high-wind situations, with and without
NGCS. Finally, Section 7 concludes the work, and addresses lines
of future research.

2. BACKGROUND

In this paper, we propose the use of an Artificial Neural Network
(ANN) in conjunction with the MAP-Elites search algorithm to de-
velop robust controllers for fixed-wing landing in a variety of con-
ditions. This section includes the necessary background on ANNs
(Section 2.1), MAP-Elites (Section 2.2), and flight mechanics (Sec-
tion 2.3) and situates our work within the literature (Section 2.4).

2.1 Artificial Neural Networks (ANNSs)

An ANN is a powerful function approximator, which has been
used in tasks as varied as weather forecasting [20], medical diag-
nosis [6], and dynamic control [18, 28]. Neural networks have also
been successful in many direct control tasks [15, 29]. An ANN is
customized for a particular task through a search for “weights",
which dictate the output of an ANN, given an input.

In this work, we use a single-hidden-layer, fully-connected, feed-
forward neural network. We normalize the state variables input into
the network by using their upper and lower limits so that each state
variable varies on the same scale. The neural network, using nor-
malized state inputs, then calculates the normalized control outputs,
which are then scaled based on the desired bounds for thrust and
torque.

By using a search algorithm, appropriate weights can be found
to increase the ANN’s performance on a measure of fitness. With a
sufficient number of hidden nodes, an ANN is capable of approx-
imating any function [14] if the appropriate weights can be found
through a search method.

2.2 MAP-Elites

MAP-Elites is a search algorithm which has the basic functional-
ity of "illuminating" the search space along low-dimensional phe-
notypes — observable traits of a solution — which can be specified
by the system designer [21]. For an effective search, these pheno-
types do not need to have any specific features, except that they are
of low dimension. MAP-Elites has been successfully used in the
past for: re-training robots to recover performance after damage to
limbs [7], manipulating objects [9], soft robotic arm control, pattern
recognition, evolving artificial life [21], and image generation [22].

MAP-Elites is population-based and maintains individuals based
on their fitness, P, and phenotype, b; Figure 1 shows a simplifica-
tion of the algorithm. The MAP, M, is described by outer limits on
each phenotypic dimension and a resolution along each dimension.
This forms a number of bins, which are differentiated based on one
or more phenotypes. Each bin may only contain an individual, Z,
which bears a phenotype within a certain range and may only main-
tain one individual at a time. When multiple individuals exist with

Z.by
T T Tl‘
T

4 I T.b g

w . Q

g I 2 L *3
(o]

- I oy

z :

Q

x

|'7 Phenotype by ———

Figure 1: A simple representation of the MAP-Elites algorithm. At
most one individual can be maintained in each bin. After simula-
tion, the blue individual is placed in the same bin as the red indi-
vidual, due to its phenotype, b. If it has a higher fitness than the red
individual, it will be maintained and the red individual discarded.

similar phenotypes, the bin maintains the more fit individual. This
offers protection to individuals which generate unique phenotypes,
as there is likely less competition in these bins. This allows the sys-
tem designer to examine how the fitness surface changes across a
phenotype space, which consists of directly observable behaviors.
MAP-Elites is related to an evolutionary algorithm in that a single
bin that can support n individuals is equivalent to an evolutionary
algorithm with a carrying capacity of n individuals.

Algorithm 1 describes the process that MAP-Elites uses to gen-
erate solutions. This occurs in three stages: "creation", "fill", and
"mutate”. The creation stage initializes all of the bins, each of which
can hold a single individual (set of weights to be given to the neural
network for control) within a certain range of phenotypes.

The fill stage consists of generating random individuals, simu-
lating those individuals, and placing them in the appropriate bin
within the map. In the case of two individuals belonging to the
phenotype range of the same bin, the more fit individual survives,
while the other is discarded.

In contrast, during the mutate stage, one of the individuals within
the map is randomly copied, mutated, and simulated. This muta-
tion occurs by changing the individual’s genotype, or one or more
of the numbers that describe the individual (weights of the neural
network). Such a mutation will typically result in a change in phe-
notype evaluation, so the resulting individual may be placed in a
different bin than the parent individual. In this way the map can
continue to be filled during the mutate stage. This stage can con-
tinue until a stopping condition is met; in this work we choose a
preset number of iterations, and examine the final individuals after
this process is complete.

The total number of individuals that can be maintained is equal to
the number of bins (since each bin can support at most one individ-
ual), but in cases of lower phenotypic diversity in the population,
fewer individuals may be maintained, as fewer bins are accessed.

A major benefit of the MAP-Elites algorithm is that it not only
preserves individuals with unique behaviors (because they may ex-
ist in a low-competition bin), but also that it encourages a spread of
behaviors across the phenotype space, which may allow a system
designer to better describe the shape of the fitness surface across
phenotype dimensions.

Algorithm 1: Map-Elites algorithm. The map (M) is pop-
ulated with individuals (Z) based on their phenotype (b) and
fitness (P).
Input: Np, Ny
Output: M
1 M« InitializeMap ()
2 foriter =1 — Nr do

// Fill map loop

3 7 <+ BuildIndividual ()

4 Z{P,b} + Simulation(Z)
5 M < Place (Z)

6 for iter =1 — Njps do

// Mutate map loop

7 biter ¢ RandomBinPhenotype ()
8 7 + GetIndividual (M, bjter)

9 T’ < CopyIndividual (T)

10 7' + MutateIndividual (Z)

11 ' {P',b'} + Simulation(Z')

12 M < Place (T')

sy

3 return Map of solutions M

2.3 Flight Mechanics

In this section, we discuss the principles of aerodynamics uti-
lized in the flight simulator [4]. The following theory is used in
conjunction with computational data for a NACA 2412 airfoil, as
calculated by the XFOIL airfoil analysis software [8].

The forces of lift (£7,) and drag (F'p) on an airfoil are a function
of the axial shear stresses (A) and normal pressure (N), as well as
the angle between the airfoil chord and the velocity vector, known
as the angle of attack (). Figure 2 depicts the directions that F,
and Fp act on the airfoil, as well as the total aerodynamic force,
Fa; Fp, is always directed normal to the direction of the free stream
velocity, Voo, and Fp is always in the direction of the V. In the
figure, ¢ represents the pitch of the airfoil with respect to the hori-
zontal, and € is the angle between V., and the horizontal. Equations
1 and 2 describe the method of obtaining F, and Fp.

Fr, = Ncosa— Asina (1)
Fp =Nsina+ Acosa ?2)

These values describe the behavior of an airfoil under a specific set
of conditions, and they are often used in their dimensionless forms,
known as the coefficients of lift (C'z) and drag (Cp). They are cal-
culated by dividing the forces by the planform area of the wing
(srey) and the free stream dynamic pressure (¢). Calculations of
Sref; oo, CL, and Cp follow:

Spef =c- 4 3)
_ 1 2
Goo = 2pooVoo (€]
F)
Cp=—=)
Qoo Sref
F
Cp=—2 6)
Qoo Sref

where c is the average chord length of the wing and p is the free
stream air density. The force coefficients are thus dependent on the
size and geometry of the wing, as well as the angle of attack, while
remaining independent of the free stream air density and speed.
With previously calculated values for C'1, and Cp for varying a,
Fr and Fp can be calculated using Equations 7 and 8.

Fr = 'CL'Vfo'poo‘Sref @)

Fp =

N — N~

'CD'Vozo'poo'sref (8)

It is an important note that V. denotes the speed of the air in
reference to the craft, which is often different from the speed of the

A Ay, . E

.=
.=

="

¢¢¢¢
2

Figure 2: The aerodynamics force vectors acting on the airfoil.

craft with respect to the ground. This difference may be caused by
the presence of wind, as is the case in our simulator.

Fixed-wing aircraft use a system of either engines or propellors
to create thrust, which acts parallel to the craft’s body, denoted as
the a, direction. In addition to controlling pitch, or rotation about
the a,, through use of the elevator, a craft can also control its rota-
tion about the a.., known as roll, and rotation about the a., known
as yaw. Figure 3 depicts the rigid frame used to describe the air-
craft body. In this work we use a simulator with three DOF: two
linear (x and 2) and one rotational (pitch about a,). For an aircraft
to increase the amount of lift it can generate at a given speed, it can
rotate about the a,, axis to increase «; Figure 4 displays the values
of C'r, and Cp used for a variety of « in the simulator [8].

In our simulator, we consider aerodynamic forces while « is in
the range of -25° to 74°. Outside of this range, XFOIL did not
provide computations that converge, but these large angles of attack
correspond to stall modes, wherein the wing produces very little
lift. Thus, in this work we neglect the aerodynamic forces when o
is outside this range.

2.4 Related Work

In this work we study the use of the MAP-Elites search algo-
rithm [21] to develop successful weights for neural networks to act
as control policies for a UAV in high-wind conditions. Autonomous
flight and landing of UAVs has been a topic of interest for multiple
decades [10, 13, 16, 28]. As such, here we only provide a small
sample of related works. For a more comprehensive view of au-
tonomous UAV control, we refer the reader to Gautam’s work [12];
for MAP-Elites, the work by Mouret and Clune [21].

Most of the work on autonomous UAV control has consisted of
model-based control schemes, attempting to follow a pre-defined
flight path. These control schemes can be either linear, linear with
regime-switching, or nonlinear [3, 24]. In contrast, in this work we
do not need a system model and instead use a search algorithm to
develop weights for a neural network for model-free control.

Shepherd showed that an evolved neural network can outperform
even a well-tuned PID controller for a quadrotor UAV; the craft
was able to recover from disturbances of up to 180° (being turned
upside-down), while a PID controller was only capable of recov-
ering from disturbances of less than 60° [26]. In contrast, in this
work we are performing a landing task with a fixed-wing UAV and
using a different search mechanism.

Previous work on MAP-Elites has also been used to search for
neural network weights for various tasks [7, 9, 21]. In this work
we also search for neural network weights; however, the task in
this work has unique dynamics compared to previous MAP-Elites
studies and a strong sequential decision making component.

Figure 3: The rigid frame used to describe the aircraft

12 ——CL
11 emen
1.0
0.9
0.8
0.7
0.6
05
0.4
03
0.2

0.1 e M
0.0 o i

041
0.2
0.3
04
0.5
058
07 ; ! ; ; ;
-100 -75 -5.0 -25 0.0 25 5.0 75 100 125 150 175

Angle of Attack (degrees)

Coefficient

Figure 4: Plot of C'r, and C'p for varying o on a NACA 2412 airfoil;
GetCoefficients («) returns these values.

Algorithm 2: SimulateTimeStep communicates with the
ANN to get the controls for the time step, then returns the new
state, as calculated by the forces acting on the aircraft.

Input: ¢, S;

Output: Siq,

{Fc,Mc} <+ GetControls(S)

{Veo, 0} < GetAirSpeed(rs,)

a « GetAttackAngle(6,S:)

{CL,Cp} + GetCoefficients(a)

{FL,Fp} < CalcheroForces(CL,Cpb, V)

Fr +GetVectorComponents(S:,0, Fr, Fp, Fo)

7 Styt, — DynamicsCalc(St,ﬁR,Mc)
8 return Sy,

A N B W N =

3. FLIGHT SIMULATOR DESIGN

To model UAV flight behavior, a three DOF flight simulator was
designed for two linear and one rotational DOF. The simulator ap-
proximates the effects of aerodynamic forces, while maintaining
realistic aircraft behavior. It operates by receiving thrust and pitch
controls, calculating the aerodynamic and gravitational forces on
the aircraft, combining the forces, and calculating system’s physi-
cal response. All pitching moments caused by aerodynamic forces
are neglected due to the use of trim [5] and Cr and Cp for vary-
ing o of the aircraft are based on that of a NACA 2412 airfoil, as
predetermined using XFOIL [8].

Algorithm 2, SimulateTimeStep, describes the main func-
tion of the simulator. While the time, ¢, is less than the maximum
run time, tmqz, the simulator provides the current state, St, to the
ANN through the function GetControls and receives the force
and moment applied, F'c and M¢, respectively. The simulator then
calculates V. and 0 from the aircraft’s ground speed in the two
linear DOF, r,, and 7., and the wind generator; a typical wind pro-
file for a 30 [s] run can be seen in Fig. 5. Using 0 and S¢, o, C1,
and Cp are calculated. After determining the aerodynamic forces
on the ai_rpraft, all of the forces are summed, and the resultant force
vector, F'g, is put into the function DynamicsCalc along with S
and Mc, and the new state, Sy, is determined.

The function DynamicsCalc, is described in detail in Algo-
rithm 3. The algorithm was designed for scalability, and therefore

X-Wind Velocity [m/s]

15
Time [sec]

Figure 5: One sample of the simulator’s randomly-generated wind;
in this work we center the distribution around a sine function with
amplitude 15 [m/s].

Algorithm 3: DynamicsCalc determines the new state of the
aircraft using Newtonian physics and trapezoidal integration.

Input: S, Fr, Mc
Olltpllt: SH-ts
1 for each linear DOE, i, do
F .
2 R
. . 1 . .
3 Pittt, < Tit + 5 - ts - (Foe + Tieye,)
1 . .
4 | Tipdt, STt t+ g lse (Fie + Tit+ts)
for each rotational DOF, j, do
e Mc
Pjt+ts € 1
. .) . .
7 Pjttts Gjt+ 5 s (@)t + Djetes)
2 . .
8 | @jtrt, & it + 5 ts - (Pge + Djttes)
9 Sttty = {Tttty, Pttty Tetys Pttty Praty ety)
o0 return Sy y:,

fz',t-‘-t,g —

W

[

contains two loops: one for calculating linear system responses and
another for calculating rotational system responses. The first loop
runs through an iteration for each linear DOF, ¢; Newton’s first law
of motion is used to calculate the acceleration, 7; +++_, then the air-
craft’s velocity, 7 +++,, and position, 7; ¢4+, are calculated using
trapezoidal integration.

The second loop then performs an iteration for each rotational
DOF, j. It calculates the aircraft’s angular acceleration, ¢; ¢4+,
and performs trapezoidal integration to calculate the aircraft’s an-
gular velocity, ¢; ¢+, and pitch, ¢; ;1. Finally, all of the state
variables form St , and the new state is returned.

4. SIMULATOR VERIFICATION

In order to verify that the flight simulator effectively models
fixed-wing flight, we conducted preliminary experiments to test the
functionality of the aerodynamic forces before introducing the neu-
ral network and MAP-Elites algorithm: a takeoff test and a stable
flight test.

To ensure that the simulator properly calculates aerodynamic
forces, we modeled a fixed-wing takeoff, and compared against the
well understood behavior of a fixed-wing craft. With ¢ = 0, a
constant thrust of 100 [N] was applied to the aircraft for 60 [s].
After approximately 14 [s], at a speed of 70 [m/s], the aircraft
lifted off, and continued to climb for the remainder of the simula-

tion. The simulation was then repeated with ¢ increased to 5°, then
10°with respect to the horizontal. A plot of the horizontal and ver-
tical displacements of the three simulations is shown in Fig. 6. For
the three simulations, as ¢ increases, the total horizontal displace-
ment required for takeoff to occur decreases, which agrees with
aerodynamic theory. To verify lift for both positive and negative
«, ¢ was set to -10°with respect to the horizontal, and the same
test was performed, this time allowing the thrust to act for a total of
eight minutes. Due to the negative coefficient of lift associated with
this negative angle of attack, the aircraft never lifts off, thus vali-
dating the aerodynamic lift forces of the simulator for both positive
and negative a.

For the stable flight test, a force balance was first conducted on
the aircraft to determine its horizontal equilibrium speed and equi-
librium thrust at ¢ = 0. Through algebraic manipulation, Voo =
69.3 [m/s] and Fc = 8.3 [N] were calculated for steady flight.
These values were then used in the simulator for an aircraft already
in the air, and the result was a bounded system that approached
v, = 0 with a maximum error of less than 0.01 [rmm/s].

5. EXPERIMENTAL PARAMETERS

Our experimental runs used the following parameters: the UAV
has a mass of 20 [kg], and a wing area of 0.2 [m?], corresponding to
a wingspan of 1 [m] and chord length of 20 [cm]. It has a rotational
inertia of 20 [kg m?]. We initialize the UAV in low level flight;
it starts 25 [m] above the ground, with a 60 [m/s] z-velocity and
0 [m/s] z-velocity. To encourage landing in the early stages, we
initialize the UAV pitched slightly downward, at approximately 3°
below horizontal. This allows the aircraft full mobility through the
space: it can climb without bound, and we observed some cases of
the aircraft completing a full loop. The UAV is allowed up to 60
[s] of flight time, though the simulation is cut off when the UAV
touches down or when it reaches 200 [m] above ground level.

Our neural network used for control consisted of 7 state inputs,
5 hidden units, and 2 control outputs. The state variables form the
vector: {t, 7'z, 7=, 7z, ¢, sin(¢), cos(¢)}, and are normalized using
the ranges {t € —10 : 70,7, € 40 : 90,7, € —10 : 10,7, €
—5:30,¢ € —0.2 : 0.2,sin(¢) € —0.5 : 0.5, cos(¢) € 0 : 1}.
We used 5 hidden units because this allowed the search algorithm
to discover successful policies while keeping the overall computa-
tion time low. The 2 control outputs are {Fc, Mc¢}, the force of
thrust and moment about the center of the wing to be used for the
dynamics of that time step. The UAV can provide thrust limited in
the range 0:50 [IN], and torque in the range 0:5 [N'm].

In our implementation of MAP-Elites, we chose to use two phe-
notype dimensions with a resolution of 10 equally-spaced bins along
each dimension. This results in 100 empty bins at the start of each
experimental trial. We used 50 filling iterations and 1000 mutation

T T

——0 Degree Pitch

-eeveeu Degree Pitch
10 Degree Pitch

@

8
T
L

Vertical Displacement (m)
IS
5

n
0 200 400 600 800 1000 1200 1400 1600 1800 2000
Horizontal Displacement (m)

Figure 6: z- vs z-position during the takeoff simulator verification
test for 0°, 5°, and 10° constant ¢.

iterations.

We examined a wide range of possible phenotypes, but found
that the most effective phenotypes were those which averaged val-
ues across a moderate number of timesteps. For example, the final
kinetic energy was a very sensitive phenotype; very small geno-
type changes caused very large changes in the phenotype space. In
contrast, using the average kinetic energy over the last two to three
seconds (20 to 30 timesteps) proved to be more stable. In our results
reported in this paper, we used the following two phenotypes:

e Phenotype I: Average x-position over the last two seconds
the UAV is in the air, with limits of 200:900 [m].

e Phenotype 2: Average: z-position over the last two seconds
the UAV is in the air, with limits of 0:4 [m].

We arrived at these phenotypic choices after a number of tri-
als using other phenotypes including time-in-air, average x- or z-
velocity over the last two seconds, final orientation, and average
angle of attack over the last two seconds. We found that the final
phenotypes we selected offer an interesting spread of behaviors for
the following reasons: 1) preserving solutions which vary along the
z-position before they land preserves solutions with longer-range
approach behaviors which vary from conservative to aggressive,
and 2) preserving solutions which vary in average z-positions be-
fore they land preserves solutions with close-to-ground behaviors
which range from conservative to aggressive.

To calculate fitness of an individual, we use the angle at which
the aircraft approaches the ground ("glide angle") and the factor
ir,. The glide angle is calculated using the x- and z- velocities over
the last 3 [s] in flight, and 47, returns a value of O if the UAV has
landed and a very large negative number if it has not. The fitness
calculation is shown below:

P= > -

t=(end—3):end

atan <@> ‘ +1ir &)

Tax,t

During our experiments, we noticed that a very low number of
bins were being filled, no matter how we adjusted the outer limits
of the MAP. We found that this was due to a co-variation between
our phenotype variables. In order to achieve a wider variety of phe-
notype behaviors, as well as to allow the UAV to drastically change
its behavior when near the ground, we developed a near-ground
control switching (NGCS) scheme, in which an individual is de-
scribed not by one set of weights for the neural network, but two
separate sets of weights. The UAV uses one set of weights for the
approach, and when it is less than 5 [m] above ground level and has
a negative velocity in the z-direction the second set of weights are
used. This allows for the UAV to more easily learn the non-linear
behaviors that are necessary for a smooth landing; human pilots
use 3° as a rule of thumb for the glide angle before "flaring" when
they are close to the ground, increasing their pitch and thereby their
coefficient of lift, for a softer landing [27].

We performed separate trials with and without wind effects. In
the trials with wind, we created a random distribution around a sine
function with amplitude 15 [m/s] (See Figure 5).

6. RESULTS

We conducted experiments by using MAP-Elites to search for
controllers that provided a smooth landing in four cases: 1) no
wind, no NGCS, 2) with wind, no NGCS, 3) no wind, with NGCS,
and 4) with wind, with NGCS. Specifically, we show:

e A typical whole population of final controllers for each case

(Section 6.1; Figures 7-10).

e Average mean and standard deviation (u, o) of controller per-
formance across 30 statistical runs (Section 6.2; Table 1).

e The effect of the choice of phenotype on final performance
and recommendations for phenotypes in dynamic domains
(Section 6.3; Figure 11).

In each of the figures, a black path with triangles denotes that the
UAV did not land within the allotted 60 [s], a red path with asterisks
denotes a hard landing with glide angle greater than 3°, and a blue
path with circles denotes a soft landing with glide angle less than
3°. The plots reflect the UAV’s -z flight path.

6.1 Typical Final Population

The most informative way to show the additional complexity of
behaviors that can be learned by using the NGCS technique can
best be seen by the flight profiles themselves. In Figures 7-10, we
show the flight profiles of all members of the final population of a
typical run for each method.

Figure 7 shows the final map population flights in the no NGCS,
no wind case. The controllers that are developed can be easily de-
scribed as "pull up, at various rates". Seven of the generated con-
trollers do not actually land over the 60 [s] of flight time, and in-
stead climb until they reach the height bound, ending the simula-
tion. Even though they are penalized heavily for not landing, they
are protected as they have a sufficiently different phenotype from
the others.

Figure 8 shows the final map population flights in the no NGCS,
windy case. These controllers are also easily described as "pull up,
at various rates". In this case, the controllers are more proficient
at making sure that their final z-location is at ground level, though
this results in the undesirable behavior of "climb, stall, fall". In an
implementation, a system designer would use their knowledge to
choose the best controller to implement, so the inclusion of these
controllers in the final population is not a detriment. However, the
stochastic nature of the wind showcases the primary weakness of
this method: one controller gets as low as 0.05 [m], but then con-
tinues to pull up and climbs without bound.

Table 1: Median number of solutions in the final map, and mean and
standard deviation (u, o) of the landing glide angle [°], landing z-
velocity [m/s], and landing z-velocity [m/s] for each wind-NGCS
combination, and 100 randomly-controlled trials.

I i I v Rand
Wind No Yes No Yes No
NGCS No No Yes Yes No
Median
of 12 13 25 23 N/A
Solutions
Glide 2.34 2.30 2.8 234 | 13.56
Angle 1
Glide 1.60 1.51 1.30 129 | 1023
Angle o
Landing || ¢4 282 | 2.9 299 | 16.04
z-vel.
Landing |y 05 | g1 | 165 | 164 | 1210
z-vel. o
Landing 1| 56 9 | 7074 | 7359 | 7326 | 65.60
z-vel. p
Landing ||, 4o 1.10 3.36 3.09 5.60
z-vel. o

Figure 9 shows the final map population flights in the NGCS,
no wind case. The phenotype protections still result in some con-
trollers with the "climb, stall, fall" profile; however, those that get
close enough to the ground that NGCS takes effect have a much
more sophisticated behavior than those without NGCS. These runs
will level off, and sometimes briefly climb, but generally not with-
out bound.

Figure 10 shows the final map population flights in the NGCS,
windy case. These solutions are qualitatively similar to Figure 9,
showing that the NGCS method in particular is good at rejecting
the stochastic effects of the high-winds.

6.2 Case Profiles

We additionally performed 30 statistical trials for each wind,
NGCS combination, as well as 100 flights with random control
inputs. Table 1 shows the number of solutions generated, and the
mean and standard deviation {p, o'} for the glide angle, landing z-
velocity, and landing x-velocity. The values reported represent the
values for controllers that landed with less than a 40° glide angle
(to prevent "climb, stall, fall" outliers from having a high impact on
the o calculations). In the random case, 60 of the 100 controllers
landed, while 40 climbed without bound.

z-position[m]
R

L L L L
1000 1200 1400 1600

2L
600

800
x-position[m]

Figure 7: Case I - Final flight profiles for a trial with no NGCS,
with no wind show the largest number of crafts that do not land.

2z-position[m]

%, I I 1
200 400 600 1000 1200 1400 1600

800
x-position[m]

Figure 8: Case 2 - Final flight profiles for a trial with no NGCS,
with wind.

2z-position[m]

Figure 9:
no wind.

Case 3 - Final flight profiles for a trial with NGCS with

2z-position[m]

L
1000 1200 1400 1600

200 400 600

800
x-position[m]

Figure 10: Case 4 - Final flight profiles for a trial with NGCS with
wind show the largest number of crafts with soft landings.

6.3 Recommendations for MAP-Elites in
Dynamic Problems

Before concluding this work, we collate our experiences with
MAP-Elites in a problem with a strong dynamics component, to
provide guidelines for future researchers expanding the capabilities
of MAP-Elites and related search algorithms in such problems. Our
experiences have supported the following observations:

e Phenotype stability: When a small change in genotype leads
to an extreme change in phenotype, we found that we didn’t
achieve as high of an end performance. In a dynamic prob-
lem, averaging a few points around the time of interest (in
this case the landing time) led to an increase in stability for
the genotype-phenotype mapping. This leads to MAP-Elites
performing more consistently across independent trials.

e Phenotype coupling: When phenotypes are coupled, the co-
variation can prevent certain phenotype spaces in the map
from being filled, or can preserve very low-fitness solutions
for a long period of time.

e Phenotype limits: In this work, if a phenotype was outside
our chosen limits for the map, it would be considered a part
of the nearest bin. This had the benefit of not requiring any
special handling for individuals with phenotypes outside of

10

z-position[m]

L L
1000 1200 1400 1600

L
200 400 600

800
x-position[m]

Figure 11: Final population flight profiles using the ¢ phenotypes.

the limits, but also led to the preservation of some solutions
that were well outside of our intended behaviors.

e Strong nonlinearities: If a desirable control scheme has strong
nonlinearities or discontinuities, but the conditions in which
these changes apply are easily described, defining an indi-
vidual as a set of neural network weights can at least allow a
greater spread in the phenotype space, if not increased aver-
age performance.

e Selection for mutation: Choosing the individual to mutate
based on a uniform random over indexes will equally weight
each individual; choosing based on a uniform random over
phenotypes will weight those in rare portions of the pheno-
type space or those at the edges of clusters much more highly
than those individuals that are surrounded in the phenotype
space. We found a clear difference in selection probability,
but not a clear difference in performance when testing both of
these strategies. A fitness-biased selection (which we did not
address in this work) will provide a more-greedy approach,
which might not be beneficial [17].

Phenotype dimensions dictate behaviors: Figure 11 demon-
strates that a moderately different choice in phenotypes can
have a large impact on the system behavior. Here, we sub-
stituted the final angle, ¢, (averaged over 2 [s], with range
+10°) for the z-position phenotype. The behavior is very
qualitatively different. Despite using NGCS, only three of the
produced solutions in this run actually land; all of the others
climb without bound. This change in behaviors is a result
of only a change in the phenotype used within MAP-Elites,
demonstrating the importance of phenotype selection.

7. CONCLUSIONS

In this work we examined MAP-Elites for use as a search al-
gorithm to generate successful controllers for autonomous UAVs,
even with wind disturbances. We discovered that the most useful
phenotypes were highly coupled, limiting the population that could
be supported. We partially addressed this by introducing a second
controller which is substituted when the UAV is less than 5 [m]
above ground level and still traveling downward. This produced a
wider variety of phenotypic behaviors, and a median population
twice as large. Our final controllers resulted in vertical landing
speeds lower than dropping the aircraft from 50 [cm] above the

ground. The softest landings had a glide angle of less than 1°and
vertical speed of less than 1 [m/s].

These studies were limited by simulation-based factors: first, our
simulation does not account for near-ground changes in aerody-
namics and wind. Second, our simulation does not account for aero-
dynamic forces on the body, or any part of the aircraft when out-
side of the range which we could calculate coefficients of lift and
drag using XFOIL. Finally, our simulation does not account for any
changes in air pressure with altitude.

Future work on this topic includes implementing such a con-
troller in a six DOF simulator, working toward physical implemen-
tation. We suspect that the solution quality we produced can be im-
proved upon by casting the problem within the framework of mul-
tiple objectives and incorporating a framework that will allow opti-
mziation over those multiple objectives simultaneously [30, 31].
Additionally, we are researching MAP-Elites for more complex
control problems, like vertical takeoff and landing of fixed-wing
UAVs; small UAVs typically have a large enough thrust-to-weight
ratio to be physically able to perform this maneuver, but it requires
a skilled pilot to perform.

REFERENCES

[1] On landings part II. Technical Report FAA-P-8740-12 AFS-8
(2008) HQ 101128, Federal Aviation Administration, 2008.

[2] Registration and marking requirements for small unmanned
aircraft. Technical Report 80 FR 78593, Federal Aviation
Administration, 2015.

[3] K. Alexis, G. Nikolakopoulos, and A. Tzes. Switching model
predictive attitude control for a quadrotor helicopter subject
to atmospheric disturbances. Control Engineering Practice,
19(10):1195-1207, 2011.

[4] John D. Anderson. Fundamentals of Aerodynamics.
McGraw-Hill Education, 5th edition, 2010.

[5] C.J. Bauer. Ground state-fly state transition control for
unique-trim aircraft flight control system, August 29 1995.
US Patent 5,446,666.

[6] W. Baxt. Use of an artificial neural network for the diagnosis
of myocardial infarction. Annals of internal medicine,
115(11):843-848, 1991.

[7] A. Cully, J. Clune, D. Tarapore, and J. Mouret. Robots that
can adapt like animals. Nature, 521(7553):503-507, 2015.

[8] Mark Drela. XFOIL Subsonic Airfoil Development System.
December 2013.

[9] P. Ecarlat, A. Cully, C. Maestre, and S. Doncieux. Learning a

high diversity of object manipulations though an

evolutionary-based babbling. 2015.

JD Foster and F. Neuman. Investigation of a digital automatic

aircraft landing system in turbulences. 1970.

Li G and Baker SP. Crash risk in general aviation. JAMA,

297(14):1596-1598, 2007.

A. Gautam, PB Sujit, and S. Saripalli. A survey of

autonomous landing techniques for UAVs. In Unmanned

Aircraft Systems (ICUAS), 2014 International Conference

on, pages 1210-1218. IEEE, 2014.

W. E Green and P. Y Oh. Autonomous hovering of a

fixed-wing micro air vehicle. In Robotics and Automation,

2006. ICRA 2006. Proceedings 2006 IEEE International

Conference on, pages 2164-2169. IEEE, 2006.

K. Hornik, M. Stinchcombe, and H. White. Multilayer

feedforward networks are universal approximators. Neural

networks, 2(5):359-366, 1989.

[10]

[11]

[12]

[13]

(14]

11

[15] C. CJorgensen and C. Schley. A neural network baseline
problem for control of aircraft flare and touchdown. Neural
networks for control, page 403, 1995.

HJ Kim, M. I Jordan, S. Sastry, and A. Y Ng. Autonomous
helicopter flight via reinforcement learning. In Advances in
neural information processing systems, page None, 2003.

J. Lehman and K. O Stanley. Abandoning objectives:
Evolution through the search for novelty alone. Evolutionary
computation, 19(2):189-223, 2011.

FW Lewis, S. Jagannathan, and A. Yesildirak. Neural
network control of robot manipulators and non-linear
systems. CRC Press, 1998.

W. Li and D. Harris. Pilot error and its relationship with
higher organizational levels: HFACS analysis of 523
accidents. Aviation, Space, and Environmental Medicine,
77(10):1056-1061, 2006.

A. Mellit and A. M Pavan. A 24-h forecast of solar irradiance
using artificial neural network: Application for performance
prediction of a grid-connected PV plant at Trieste, Italy.
Solar Energy, 84(5):807-821, 2010.

J. Mouret and J. Clune. Illuminating search spaces by
mapping elites. arXiv preprint arXiv:1504.04909, 2015.

A. M Nguyen, J. Yosinski, and J. Clune. Innovation engines:
Automated creativity and improved stochastic optimization
via deep learning. In Proceedings of the 2015 on Genetic and
Evolutionary Computation Conference, pages 959-966.
ACM, 2015.

M. Oncu and S. Yildiz. An analysis of human causal factors
in Unmanned Aerial Vehicle (UAV) accidents. PhD thesis,
Monterey, California: Naval Postgraduate School, 2014.

A. S Saeed, A. Bani Younes, S. Islam, J. Dias,

L. Seneviratne, and G. Cai. A review on the platform design,
dynamic modeling and control of hybrid UAVs. In
Unmanned Aircraft Systems (ICUAS), 2015 International
Conference on, pages 806-815. IEEE, 2015.

S. Shappell, C. Detwiler, K. Holcomb, C. Hackworth,

A. Boquet, and D. A Wiegmann. Human error and
commercial aviation accidents: An analysis using the human
factors analysis and classification system. Human Factors,
49(2):227 - 242, 2007.

J. Shepherd III and K. Tumer. Robust neuro-control for a
micro quadrotor. In Proceedings of the 12th annual
conference on Genetic and evolutionary computation, pages
1131-1138. ACM, 2010.

D. M Watson, G. H Hardy, and D. N Warner Jr. Flight-test of
the glide-slope track and flare-control laws for an automatic
landing system for a powered-lift STOL airplane. 1983.

L. Yliniemi, A. Agogino, and K. Tumer. Simulation of the
introduction of new technologies in air traffic management.
Connection Science, 2014.

L. Yliniemi, A. K. Agogino, and K. Tumer. Multirobot
coordination for space exploration. Al Magazine,
4(35):61-74, 2014.

L. Yliniemi and K. Tumer. PaCcET: An objective space
transformation to iteratively convexify the pareto front. In
10th International Conference on Simulated Evolution And
Learning (SEAL), 2014.

L. Yliniemi and K. Tumer. Complete coverage in the
multi-objective PaCcET framework. In S. Silva, editor,
Genetic and Evolutionary Computation Conference, 2015.

[16]

(17]

(18]

[19]

[20]

[21]

[22]

(23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

(31]

Dynamic Economic Emissions Dispatch Optimisation
using Multi-Agent Reinforcement Learning’

Patrick Mannion
Discipline of Information
Technology
National University of Ireland
Galway

Jim Duggan
Discipline of Information
Technology
National University of Ireland
Galway

jim.duggan@nuigalway.ie

ABSTRACT

Multi-Agent Reinforcement Learning (MARL) is a power-
ful Machine Learning paradigm, where multiple autonomous
agents can learn to improve the performance of a system
through experience. In this paper, we examine the appli-
cation of MARL to a Dynamic Economic Emissions Dis-
patch (DEED) problem. This is a multi-objective problem
domain, where the conflicting objectives of fuel cost and
emissions must be minimised. Here we use the framework
of Stochastic Games to reformulate this problem as a se-
quential decision making process, thus making it suitable
for the application of MARL. We evaluate the performance
of several different MARL credit assignment structures in
this domain, including local rewards, global rewards, dif-
ference rewards and Counterfactual as Potential, along with
two different objective scalarisation methods. We also intro-
duce a new variant of the DEED problem, where a random
generator fails during the simulation, with the goal of testing
the robustness of the various MARL approaches. Difference
rewards are found to offer the best performance of all the
MARL credit assignment structures tested, learning Pareto
optimal solutions that dominate those of the other MARL
approaches. Our experimental results also show that MARL
can produce comparable solutions to those published previ-
ously using the traditional DEED problem format, including
those computed by Genetic Algorithms and Particle Swarm
Optimisation.

1. INTRODUCTION

In a Multi-Agent System (MAS), multiple autonomous
agents act independently in the same environment. Agents
in a cooperative MAS are designed to work together to
achieve a system-level goal [20]. Numerous complex, real
world systems have been successfully optimised using the
MAS framework, including air traffic control [15], traffic sig-
nal control 7] and data routing in networks [19].

*This paper extends our AAMAS 2016 short paper [8] with
full implementation details for the DEED problem domain,
and additional analysis of the experimental results.

12

Karl Mason
Discipline of Information
Technology
National University of Ireland
Galway
p.mannion3@nuigalway.ie k.mason2@nuigalway.ie

Sam Devlin
Department of Computer
Science
University of York

UK
sam.devlin@york.ac.uk

Enda Howley
Discipline of Information
Technology
National University of Ireland
Galway

ehowley@nuigalway.ie

The majority of MAS research focuses on optimising sys-
tems with respect to a single objective, despite the fact that
many real world problems are inherently multi-objective in
nature. Single objective approaches seek to find a single
solution to a problem, whereas in reality a system may
have multiple conflicting objectives that could be optimised.
This is the issue addressed by multi-objective optimisation
(MOO) approaches: the requirement to make a trade-off
between competing objectives. MOO approaches typically
seek to approximate the true Pareto front of a problem, i.e.
the set of solutions which are all considered equally opti-
mal. The Pareto optimal or non-dominated set consists of
solutions that are incomparable, where each solution is not
dominated by any of the others on every objective.

Reinforcement Learning (RL) has proven to be success-
ful in developing suitable joint policies for cooperative MAS
in all of the problem domains mentioned above. RL agents
learn by maximising a scalar reward signal from the envi-
ronment, and thus the design of the reward function directly
affects the policies learned. The issue of credit assignment
in Multi-Agent Reinforcement Learning (MARL) is an area
of active research with numerous open questions, especially
so when considering multi-objective problem domains.

In this paper we analyse a Dynamic Economic Emissions
Dispatch (DEED) problem using the MAS paradigm. DEED
is an established problem domain, that has previously been
studied using approaches such as Genetic Algorithms (GA)
[1] and Particle Swarm Optimisation (PSO) [9]. The prob-
lem consists of a series of electricity generators, which must
be scheduled appropriately in order to meet a customer de-
mand profile. Generator scheduling is a complex task due
to many different factors, including: unpredictable fluctua-
tions in demand; power loss within the transmission lines;
and varying efficiency levels, power limits and ramp limits
among generators in the same plant [1].

High and often unpredictable fuel prices mean that effi-
cient generator scheduling is necessary to produce electricity
in a cost effective manner. However, it is also desirable to
minimise the environmental impact of electricity production
due to the emission of harmful atmospheric pollutants such
as sulphur dioxide (SO2) and nitrogen oxide (NO). Thus,

we approach the problem from a multi-objective perspective,
with the goal of minimising both fuel cost and emissions.
Minimising both cost and emissions from power stations is
a difficult problem, because these goals are in opposition to
each other as the optimal solution for each objective is ap-
proached. This problem domain will serve as a testbed for
evaluating the effectiveness of different MARL credit assign-
ment structures while agents learn to optimise these conflict-
ing objectives.

The contributions of this paper are as follows: 1) We pro-
pose the DEED problem domain as a new testbed for multi-
objective MAS research, reformulating the traditional prob-
lem as a Stochastic Game; 2) We propose a new variant of
the DEED domain with random generator failure, with the
goal of testing the robustness and adaptability of agents to
system disturbances; 3) We evaluate the suitability of joint
policies learned under four different MARL credit assign-
ment structures for this problem; 4) We prove empirically
that MARL can develop solutions to the DEED problem
that are of comparable quality to those published previously
(e.g. Genetic Algorithms, Particle Swarm Optimisation).

In the next section of this paper, we discuss the necessary
terminology and relevant literature. We then describe the
traditional format of the DEED problem domain, along with
the Stochastic Game version which we have developed. Sec-
tion 4 describes our experimental setup. The following sec-
tion presents our experimental results, and we then conclude
our paper with a discussion of possible future extensions to
this work.

2. RELATED WORK

2.1 Reinforcement Learning

Reinforcement Learning is a powerful Machine Learning
paradigm, in which autonomous agents have the capability
to learn through experience. An RL agent learns in an un-
known environment, usually without any prior knowledge of
how to behave. The agent receives a scalar reward signal r
based on the outcomes of previously selected actions, which
can be either negative or positive. Markov Decision Pro-
cesses (MDPs) are considered the de facto standard when
formalising problems involving a single agent learning se-
quential decision making [18]. A MDP consists of a reward
function R, set of states S, set of actions A, and a transi-
tion function T [11], i.e. a tuple < S, A, T, R >. When in
any state s € S, selecting an action a € A will result in the
environment entering a new state s’ € S with probability
T(s,a,s’) € (0,1), and give a reward r = R(s,a, s’).

An agent’s behaviour in its environment is determined by
its policy 7. A policy is a mapping from states to actions
that determines which action is chosen by the agent for a
given state. The goal of any MDP is to find the best policy
(one which gives the highest expected sum of discounted re-
wards) [18]. Designing an appropriate reward function for
the environment is important, as an RL agent will attempt
to maximise the return from this function, which will deter-
mine the policy learned.

RL can be classified into two paradigms: model-based

(e.g. Dyna, Rmax) and model-free (e.g. Q-Learning, SARSA).

In the case of model-based approaches, agents attempt to
learn the transition function T, which can then be used when
making action selections. By contrast, in the model-free ap-
proach knowledge of T is not a requirement. Model-free

13

learners instead sample the underlying MDP directly in or-
der to gain knowledge about the unknown model, in the form
of value function estimates (Q values). These estimates rep-
resent the expected reward for each state action pair, which
aid the agent in deciding which action is most desirable to
select when in a certain state. The agent must strike a bal-
ance between exploiting known good actions and exploring
the consequences of new actions in order to maximise the
reward received during its lifetime. Two algorithms that
are commonly used to manage the exploration exploitation
trade-off are e-greedy and softmax (Boltzmann) [18].

Q-Learning [17] is one of the most commonly used RL
algorithms. It is a model-free learning algorithm that has
been shown to converge to the optimum action-values with
probability 1, so long as all actions in all states are sam-
pled infinitely often and the action-values are represented
discretely [17]. In Q-Learning, the Q values are updated
according to the equation below:

Q(s,0) < Q(s,a) + alr + ymaxQ(s',a’) = Q(s,0)] (1)

where o € [0,1] is the learning rate and v € [0, 1] is the
discount factor.

2.2 Multi-Agent Reinforcement Learning

The single-agent MDP framework becomes inadequate when
we consider multiple autonomous learners acting in the same
environment. Instead, the more general Stochastic Game
(SG) may be used in the case of a MAS [2]. A SG is defined
as a tuple < S, Ay, T, Ri..n >, where n is the number
of agents, S is the set of states, A; is the set of actions for
agent 7 (and A is the joint action set), T is the transition
function, and R; is the reward function for agent .

The SG looks very similar to the MDP framework, apart
from the addition of multiple agents. In fact, for the case
of n =1 a SG then becomes a MDP. The next environment
state and the rewards received by each agent depend on the
joint action of all of the agents in the SG. Note also that each
agent may receive a different reward for a state transition,
as each agent has its own separate reward function. In a SG,
the agents may all have the same goal (collaborative SG),
totally opposing goals (competitive SG), or there may be
elements of collaboration and competition between agents
(mixed SG).

One of two different approaches is typically used when RL
is applied to MAS: multiple individual learners or joint ac-
tion learners. In the former case multiple agents deployed
into an environment each use a single-agent RL algorithm,
whereas joint action learners use multi-agent specific algo-
rithms which take account of the presence of other agents.
When multiple self-interested agents learn and act together
in the same environment, it is generally not possible for all
agents to receive the maximum possible reward. Therefore,
MAS are typically designed to converge to a Nash Equilib-
rium [13]. While it is possible for multiple individual learners
to converge to a point of equilibrium, there is no theoretical
guarantee that the joint policy will be Pareto optimal.

2.3 Reward Shaping

RL agents typically learn how to act in their environment
guided by the reward signal alone. Reward shaping provides
a mechanism to guide an agent’s exploration of its environ-
ment, via the addition of a shaping signal to the reward

signal naturally received from the environment. The goal of
this approach is to increase learning speed and/or improve
the final policy learned. Generally, the reward function is
modified as follows:

R =R+F (2)

where R is the original reward function, F' is the additional
shaping reward, and R’ is the modified reward signal given
to the agent.

Empirical evidence has shown that reward shaping can be
a powerful tool to improve the learning speed of RL agents
[12]; however, it can have unintended consequences. A clas-
sic example of reward shaping gone wrong is reported by
Randlgv and Alstrgm [12]. The authors designed an RL
agent capable of learning to cycle a bicycle towards a goal,
and used reward shaping to speed up the learning process.
However, they encountered the issue of positive reward cy-
cles due to a poorly designed shaping function. The agent
discovered that it could accumulate a greater reward by cy-
cling in circles continuously to collect the shaping reward
encouraging it to stay balanced, than it could by reach-
ing the goal state. As we discussed earlier, an RL agent
will attempt to maximise its long-term reward, so the pol-
icy learned depends directly on the reward function. Thus,
shaping rewards in an arbitrary fashion can modify the op-
timal policy and cause unintended behaviour.

Ng et al. [10] proposed Potential-Based Reward Shaping
(PBRS) to deal with these shortcomings. When implement-
ing PBRS, each possible system state has a certain potential,
which allows the system designer to express a preference for
an agent to reach certain system states. For example, states
closer to the goal state of a problem domain could be as-
signed higher potentials than those that are further away.
Ng et al. defined the additional shaping reward F for an
agent receiving PBRS as shown in Eqn. 3 below:

F(s,s) = 78(s") - @(s) (3)

where ®(s) is the potential function which returns the
potential for a state s, and =y is the same discount factor used
when updating value function estimates. PBRS has been
proven not to alter the optimal policy of a single agent acting
in infinite-state and finite-state MDPs [10], and thus does
not suffer from the problems of arbitrary reward shaping
approaches outlined above. In single agent RL, even with a
poorly designed potential function, the worst case is that an
agent may learn more slowly than without shaping but the
final policy is unaffected.

In MARL, work by Devlin and Kudenko [4] proved that
PBRS does not alter the set of Nash equilibria of a SG.
Furthermore, Devlin and Kudenko [5] also proved that the
potential function can be changed dynamically during learn-
ing, while still preserving the guarantees of policy invariance.
PBRS does not alter the set of Nash equilibria of a MAS, but
it can affect the joint policy learned. It has been empirically
demonstrated that agents guided by a well-designed poten-
tial functions can learn at an increased rate and converge
to better joint policies, when compared to agents learning
without PBRS [3]. However, with an unsuitable potential
function, agents learning with PBRS can converge to worse
joint policies than those learning without PBRS.

14

2.4 Multi-Agent Credit Assignment Structures

Here we introduce the MARL credit assignment structures
that we will evaluate on the DEED domain. Previous work
by Yliniemi and Tumer [21] identified the importance of
appropriate credit assignment structures for multi-objective
MARL problem domains. In particular, their experimental
results showed that difference rewards are a very promising
approach for learning good joint policies in multi-objective
MARL problems. In addition to difference rewards, we also
evaluate the performance of three other credit assignment
structures in the DEED domain.

A local reward (L;) is based on the utility of the part of
a system that agent i can observe directly. Individual agents
are self-interested, and each will selfishly seek to maximise
its own local reward signal, often at the expense of global
system performance when locally beneficial actions are in
conflict with the optimal joint policy.

A global reward (G) provides a signal to the agents
which is based on the utility of the entire system. Rewards of
this form encourage all agents to act in the system’s interest,
with the caveat that an individual agent’s contribution to
the system performance is not clearly defined. All agents
receive the same reward signal, regardless of whether their
actions actually improved the system performance.

A difference reward (D;) is a shaped reward signal that
aims to quantify each agent’s individual contribution to the
system performance [19]. The unshaped reward is equal to
G(z), and the shaping term is —G(z—;). Formally:

Di(2) = G(2) = G(2-i) (4)

where D; is the reward received by agent i, G(2) is the
global system utility, and G(z—;) is the global utility for
a theoretical system without the contribution of agent 3.
Here z is a general term that may represent either states
or state-action pairs, depending on the specific application.
Difference rewards are a well-established shaping methodol-
ogy, with many successful applications in MARL (e.g. [15,
19, 21]). However, they do not provide the same theoretical
guarantees as potential-based shaping approaches, and thus
their use may modify the set of Nash equilibria of a SG.

Counterfactual as Potential (CaP), proposed by De-
vlin et al. [6], is an automated method of generating multi-
agent potential functions using the same knowledge repre-
sented by difference rewards. CaP automatically assigns
potentials to states using the counterfactual term G(z_;),
so that ®(s) = G(z—;). In this framework, the unshaped re-
ward R(s,a,s’) = G(s,a,s’), and the shaping reward F (s, s")
is calculated as normal in PBRS according to Eqn. 3. As
®(s) for agent i is in fact based on the state of the other
agents in the system, the potential function is dynamic, and
CaP is thus an instance of Dynamic PBRS [5]. CaP there-
fore preserves the guarantee of consistent Nash equilibria,
while incorporating knowledge based on difference rewards
in an automated manner. According to the proof of necessity
for PBRS [10], there must exist a problem domain for which
difference rewards alter the Nash equilibria of the system
[6]. For applications that specifically require the guarantees
of PBRS, CaP is a viable alternative to D, as it benefits
from the theoretical properties of PBRS whilst leveraging
the same information that is represented by D.

3. DYNAMIC ECONOMIC EMISSIONS
DISPATCH (DEED)

As we discussed previously, in the DEED problem a num-
ber of electricity generators must be scheduled to meet a
specified demand over a period of time, while minimising
both fuel cost and emissions. The version of the problem
which we analyse here was originally proposed by Basu [1].
Basu’s version is presented as a multi-dimensional optimi-
sation problem, with each dimension in the problem space
representing the power output of a generator at a given time.

The cost function fi which computes the total fuel cost
for the generators, including the effect of valve point loading
[16], is defined as:

M N

Fr=" [antbaPam+ca(Pam)’ +ldnsin{en(Py"" = Pom) }]

m=1n=1

()

where M = 24 is the number of hours, N = 10 is the number
of power generators, an, bn, ¢n, d, and e, are the cost coef-
ficients associated with each generator n, P,,, is the power
output from generator n at time m, and P/ is the mini-
mum permissible power output of generator n.

The total combined emissions of SO> and NO from the
group of generators is calculated using function fa [1]:

an + Bnan + ’Yn(an)Q + UeXP 6an] (6)

an

2y

Here ayn, Bn, Yn, nn and §, are the emission coefficients
associated with each generator n.

The total power output in a given hour must be equal to
the sum of the power demand and transmission losses:

N
Z-an:PDm+PLm Yme M (7)
n=1

where Ppy, is the power demand over hour m and Ppr,, is
the transmission loss over hour m.

There are two inequality constraints which any potential
solutions are subject to: the operating limits and the ramp
limits for each power generator in the station. The operating
limits specify the minimum and maximum possible power
output of a generator, while the ramp limits determine the
maximum allowed increase or decrease in the power output
of a generator from one hour to the next.

P < P < PO (8)
an — f'm(m-1) S URn (ga)
Pn(m—l) - an S DRn (gb)

where P™" and P™%® refer to the minimum and max-
imum power output of each generator, P,,, is the power
output for n € N and m € M, and UR,, and DR,, are the
ramp up and ramp down limits for generator n.

In order to satisfy the equality constraint described by
Eqn. 7, the first generator n = 1 is a slack generator. The

15

power outputs of the other 9 generators are set directly, and
the slack generator makes up any shortfall in the combined
power output. The settings for the slack generator are there-
fore dependant variables during the optimisation process,
while the outputs of the other N — 1 generators are inde-
pendent variables. The power output of the slack generator
for a single hour, Pi,,, may be calculated by rearranging
Eqn. 7:

N
Pim = Pom + Pum — Y Pam (10)
n=2

The loss in the transmission lines between generators,

Prm, over hour m is calculated as follows:

N N
Prm =Y > PunBu; P]m+2P1m(Z BinPpum)+Bi1(Pim)?

n=2j=2 n=2
(11)
Where B is the matrix of transmission line loss coefficients
[1]. Combining Eqn. 10 with Eqn. 11 produces the following
quadratic equation:

0= Bll le) + ZBln nm —)P17n+

(12)

(PDm + ZZanBn]an

n=2j=2

- Z an)
n=2

Solving this quadratic equation using basic algebra will
give the reactive power of the slack generator, Pi,,, at each
hour. All required values for the cost coefficients, emission
coefficients, ramp limits, generator capacity limits, power
demands and transmission line loss coefficients can be found
in the work of Basu [1].

4. DEED AS A MULTI-OBJECTIVE
STOCHASTIC GAME

In order to create a version of the Dynamic Economic
Emissions Dispatch problem suitable for the application of
MARL, we reformulate it as a multi-objective Stochastic
Game. We divide the problem into one of sequential decision
making, where each hour m € M is a separate timestep in
the SG. Each of the 9 directly controlled generators n =
{2,...,10} are assigned to an agent i = {2,...,10}, where
agent ¢ sets the power output P,,, of its generator n = i at
every timestep m.

It is now necessary to derive new cost and emissions func-
tions, which will measure the system utility at each timestep.
From Eqn. 5, we develop a function £ which computes the
local cost for generator n over hour m:

fE(n,m) = an+bn Pom+cn(Pam)’ +|dnsin{en (P — Pom) }|

(13)
Thus the global cost function f& for all generators over hour
m is:

fE(m) =" f&(n,m) (14)

Similarly, from Eqn. 6 we develop an emissions function fZ
for generator n over hour m:

fEL (n,m) = E(Oén +Bnpnm +7n(PnnL)2 +T7€XP 6an) (15)

where F = 10 is the emissions scaling factor, chosen so that
the magnitude of the local emissions function fZ matches
that of the local cost function fZ. It follows that the global
emissions function f€ for all generators over hour m is:

N

fEm) =>" fE(n,m) (16)
n=1

The next environmental state for each agent 4 is defined as

a vector containing the change in power demand A Pp since

the previous timestep, and the previous power output of the

generator n, P,,,. The change in power demand at time m

is calculated as:

APpm = Ppm — Pp(m-1) (7)

Therefore the state vector for agent ¢ (controlling genera-
tor n) at time m is:

Sim = [APDm, Pn(m—l)] (18)

The action chosen by agent i at each timestep determines
the power output of the generator n under its control. How-
ever, the power output constraints in Eqn. 8 must be satis-
fied for each generator. Therefore the possible action set for
agent ¢ consists of:

A ={PI"", ..., Pty (19)

At any hour m, when the ramp limits in Eqns. 9a and 9b
are imposed, an agent’s action set is constrained to:
Aim ={Paum-1)—URn > P, ..., Pagm—1)—UR, < P"*"}
(20)
We must also consider how to handle the power limits
and ramp limits of the slack generator, n = 1. We develop
a global penalty function fz? based on the static penalty
method [14] to capture violations of these constraints:

fi(m) = Zam+w) (21)

v=1
Pip — P if Py, > Pmes

hi =< P — Py, if P < PP (22)
0 otherwise

(Pim — Pygm—1)) —UR:
h2 = (Pl'm
0 otherwise

if (le - Pl(m—l)) >UR,y

(23)
where V' = 2 is the number of constraints handled using
this method (one possible violation each for slack generator
power and ramp limits over hour m), C = 10E6 is the vi-
olation constant, h, is the violation of each constraint, and
6y, = 0 if there is no violation in a given constraint and
0, = 1 if the constraint is violated. The violation constant
C = 10F4 was selected so that the output of the penalty
function will have a similar magnitude to that of the cost
function f€. The penalty function is an additional objective
that must be optimised, in addition to cost and emissions.

16

— Pigm—1)) + DR1 if (Pim — Pim—1)) < —DRa

S. APPLICATION OF MULTI-AGENT
REINFORCEMENT LEARNING

5.1 Calculating Counterfactuals

We apply multiple individual Q-Learning agents to the
DEED SG defined above, learning with credit assignment
structures L, G, D, and CaP. We have already defined
suitable equations for representing the local and global ob-
jectives in the section above, so we now address the question
of how to calculate counterfactual terms to be used with D
and CaP. The counterfactual cost, emissions and viola-
tions terms for an agent i are calculated by assuming that
the agent did not choose a new power output value in the
timestep m (i.e. the power output of generator n = ¢ did
not change):

Gu”)—Zﬁwm+ﬁ@m4) (24)
o

G“”)—Zﬂwm+ﬂ@m4) (25)
n=1

The output of the counterfactual version pG =D of the

penalty function pr is calculated as per Eqn. 21, with the

term Pl(fn*i) substituted for Pi,, in Eqns. 22 and 23. Pff{”
is calculated as:

N
Pl(fn 7‘>7PDm+PLnL_Zan_Pi(m—1) (26)

n=2
n#i

5.2 Scalarisation of Objectives

We combine the reward signals Lo, Go, D, and CaP, for
each objective o € O into single reward signals, using two
different scalarisation techniques: linear scalarisation (4)
and hypervolume scalarisation (A). The agents receive one
of these scalarised reward signals while learning: L(+), L(\),
G(+), G(A\), D(+), D(X), CaP(+) or CaP()).

o
=3 wofo (27)
o=1

(@)
~T1% (28)

where w, is the objective weight, f, is the objective func-
tion (global or local version as appropriate), and the generic
R is replaced by L, G, D, or CaP as appropriate, depend-
ing on the credit assignment structure used. The objective
weights used are: w. = 0.45, we = 0.55, and w, = 1.0.
These values were chosen following parameter sweeps, so
as to maintain a good balance between the objectives while
learning. Note that in the case of a local reward L, O = 2 as
there is no local penalty function. O = 3 for all other credit
assignment schemes, as they all make use of the global ver-
sions of the objective functions. Note also that the rewards
assigned are negative, as all objectives must be minimised.

2500

2000 -

1500 +

1000

Power (MW)

500 -

Time (Hours)

Figure 1: 24 Hour Power Demand

5.3 Action Selection

In initial experimental work on the DEED SG domain
using the full action definitions in Eqns. 19 and 20, we
found that the quality of the policies learned was highly
variable, often resulting in poor performance. We attribute
this to the fact that the action space A; for each agent is
of a different size. For example, using a discretisation level
of IMW, the smallest action space has 46 actions, and the
largest has 321 actions when using the generator operating
limits from Basu’s work [1]. These discrepancies meant the
time required for each agent to sample the full state action
space varied widely. To overcome this difficulty, we create
an abstraction A* of the action space, where each agent
has a set of 101 possible actions A* = {0,1,...,99,100}.
Each action represents a different percentage value of the
operating range of the generator, so generators with wider
operating ranges have larger increments. The power output
from generator n for action a; is calculated as:

i=n (29)

X . P:Lna:c _ P:lnln
Pn _ P:an +a7,’ ()

100

The power output selected by an agent is still subject to
the ramp limits, as per Eqns. 9a, 9b and 20, so a* selec-
tions that would violate these limits are not allowed. This
action space abstraction is used in all experimental work
presented in this paper. Agents select actions from A* us-
ing the e-greedy strategy, where a random action is selected
with probability €, and the highest valued action is selected
with probability 1 — e.

5.4 Experimental Procedure

We test two variations of the DEED domain. In the nor-
mal version of the problem, the agents learn for 20,000
episodes, each of which comprises 24 hours. The second
version also lasts for 20,000 episodes; after 10,000 episodes a
random generator n € {2,...,10} fails, and the agents must
learn to compensate for the loss of this generator, while still
meeting the same electricity demand. The aim of this sec-
ond experiment is to test the robustness to disturbances and
adaptability of agents learning by each MARL credit assign-
ment structure. The demand profile used in both experi-
ments is shown in Fig. 1. This is the same demand profile
that was used in used in work by Basu [1] and Mason [9], so
our DEED SG results will be directly comparable to results

17

reported by these authors. The learning parameters for all
agents are set as follows: a = 0.10, v = 0.75, ¢ = 0.05.
These values were selected following parameter sweeps to
determine the best performing settings.

6. RESULTS

We will first discuss the results of the standard version
of the problem. All plots include error bars representative
of the standard error of the mean based on 50 statistical
runs. Specifically, we calculate the error as o//n where o
is the standard deviation and n is the number of statistical
runs. The plots show a 200 episode moving average across
the 50 statistical runs that were conducted. All claims of
statistical significance are supported by two-tailed t-tests
assuming unequal variances, with p = 0.05 selected as the
threshold for significance.

In each table, the power is presented in MW, the cost is
presented in $ x10% and the emissions are presented in 1b
x10%. All values in each table are rounded to 4 decimal
places. Table 1 displays the average cost and emissions for
the MARL approaches tested, along with NSGA-II results
reported by Basu [1] and PSO-AWL results reported by Ma-
son [9] for comparison purposes.

The plots of learning curves for the cost objective in the
first experiment (Figs. 2 and 3) gives an indication of learn-
ing speeds and stability of solutions for each of the ap-
proaches tested. As expected, L performs poorly here, as
the local reward encourages agents to greedily minimise their
own fuel cost, without considering the utility of the system
as a whole. D converges to a stable policy most quickly with
both scalarisations, while both variants of G learn good poli-
cies, but at a slower rate than D. CaP initially learns more
quickly than G for both scalarisations; increased learning
speed is a typical characteristic of PBRS. However, the fi-
nal joint policies learned by C'aP are not as good as those
learned by G or D. Similar learning behaviour is exhib-
ited for the emissions and penalty objectives for all reward
structures tested.

No statistical difference was found between the final per-
formance of the scalarisation approaches for G(+) and G()),
or for CaP(+) and CaP()). The differences in the means
between D(+4) and D(\) were statistically insignificant for
the cost objective, but were significant for the emissions ob-
jective (p = 1.19 x 1078). The differences in the mean final
performance of D(+) and G(+) were found to be signifi-
cant for both the cost objective (p = 5.01 x 1072?), and the
emissions objective (p = 3.20 x 1071°).

Figures 4 and 5 show the learning curves for the cost ob-
jective in the second experiment, where a random generator
fails. Both variants of L again perform poorly in this exper-
iment. Similar to the first experiment, CaP initially learns
more quickly than G, but converges to a poorer policy. D is
again the best performing reward structure here, and both
variants converge to a stable policy after generator failure
much more quickly than any other reward structure tested.
The agents learning using D are exceptionally robust to dis-
turbances in this problem domain when compared to agents
learning using the other credit assignment structures.Figure
6 plots the Pareto fronts for G, D and CaP. These fronts are
comprised of the non-dominated policies learned by each ap-
proach over 50 runs conducted in the first experiment. The
best policies were learned by D, and they all dominate the
best policies learned by either G or CaP.

—L(+)

—G(+) D(+) CaP(+)

Cost ($ x 10%6)

20000
Training Time (Episodes)

Figure 2: Learning curves for the cost objective

[—n —ow) caPl) |

Cost ($ x 10%6)

Training Time (Episodes)

Figure 3: Learning curves for the cost objective

Finally, analysing the average results presented in Table
1, we can see that MARL produces results that are compa-
rable to those produced by GA and PSO based approaches,
although not quite as good. For example, Basu’s NSGA-II
has 4.2% lower costs, and 6.8% lower emissions than D(+)
on average in this problem. However, MAS is arguably a
more interesting paradigm to use when studying these types
of optimisation problems, due to the ability to modify simu-
lation parameters while learning online, and the possibility
of modelling system disturbances (e.g. generator failure).
MAS are inherently suited to distributed control and opti-
misation problems like DEED, and we intend to investigate
further applications of MAS and MARL to these types of
problems in the future.

7. CONCLUSION

In this paper, we have analysed a multi-objective, real
world problem domain using the MAS paradigm. The DEED
domain was reformulated as a sequential decision making
problem using the framework of Stochastic Games, in or-
der to allow the application of Multi-Agent Reinforcement
Learning. We evaluated the effect of using several different
multi-agent credit assignment structures on the joint poli-
cies learned in this problem, while also testing two different
techniques for scalarisation of objectives. We found that
difference rewards provided the best overall performance in
this problem domain, and that a linear objective scalarisa-

18

—L(+) —G(+) D(+) CaP(+)
6
55 -
— 5]
©
=)
245
x
@
Z 4
0
j=]
C3s5 -
3 4
25 ; ; ;
0 5000 10000 15000 20000
Training Time (Episodes)
Figure 4: Effect of random generator failure
[—tw —ew ow —caPiy |
6
55 -
— 5]
©
=)
245
x
o
= 4
0
o
C35 |
3 4
25 ; ; ;
0 5000 10000 15000 20000

Training Time (Episodes)

Figure 5: Effect of random generator failure

tion (+) was generally more effective than a hypervolume
scalarisation(\). The best MARL experiment produced re-
sults that are comparable to other previously published at-
tempts at solving this problem domain, including NSGA-II
[1] and PSO [9]. Difference rewards were also found to be
more robust to disturbances than the other MARL credit as-
signment structures, and they effectively encouraged agents
to adapt in the generator failure scenario, and to quickly
learn new stable policies.

Numerous possibilities for further research are raised by
this paper. While we tested four different multi-agent credit
assignment structures, numerous others exist, some of which
may provide better solutions to the problem than those re-
ported here. Specifically, we are now examining the use
of Difference Rewards incorporating Potential Based Re-
ward Shaping (DRiP) [6] as a possible way of improving
MARL performance in this problem domain. It would also
be worthwhile to investigate the use of value function ap-
proximation in this domain, as the ability to generalise across
states and/or actions would be useful when developing agents
that could react quickly to previously unseen changes in
power demand, e.g. as would occur in a real world system.

Acknowledgments

Patrick Mannion is funded by the Irish Research Council
through the Government of Ireland Postgraduate Scholar-
ship Scheme.

Table 1: DEED Average solutions

Cost ($ x10%) Emissions (Ib x10°)

L(+) 4.1127 28.8266
L(\) 4.1149 17.6606
CaP(+) 2.8777 7.4774
CaP()\) 2.8919 9.6431
G(+) 2.7647 3.9098
G(X) 2.7607 3.9788
D(+) 2.6641 3.3255
D()) 2.6748 3.8980
NSGA-II [1] 2.5226 3.0994
PSO-AWL [9] 2.5463 2.9455
‘ —G(+) =G\ D(+) D(\) -=+CaP(+) -e-CaP(\) ‘
55
—_ 5
54.5
Yas —
3 T T T T
2.55 26 2.65 27 2.75 2.8
Cost ($ x 10%6)

Figure 6: Pareto fronts showing non-dominated policies
learned using G, D and CaP over 50 runs

REFERENCES

(1]

2]

B8l

4]

[5]

(6]

M. Basu. Dynamic economic emission dispatch using
nondominated sorting genetic algorithm-ii.
International Journal of Electrical Power & Energy
Systems, 30(2):140-149, 2008.

L. Busoniu, R. Babuska, and B. Schutter. Multi-agent
reinforcement learning: An overview. In D. Srinivasan
and L. Jain, editors, Innovations in Multi- Agent
Systems and Applications - 1, volume 310 of Studies in
Computational Intelligence, pages 183—-221. Springer
Berlin Heidelberg, 2010.

S. Devlin, M. Grzes, and D. Kudenko. An empirical
study of potential-based reward shaping and advice in
complex, multi-agent systems. Advances in Complex
Systems, 14(2):251-278, 2011.

S. Devlin and D. Kudenko. Theoretical considerations
of potential-based reward shaping for multi-agent
systems. In Proceedings of the 10th International
Conference on Autonomous Agents and Multiagent
Systems (AAMAS), pages 225-232, 2011.

S. Devlin and D. Kudenko. Dynamic potential-based
reward shaping. In Proceedings of the 11th
International Conference on Autonomous Agents and
Multiagent Systems (AAMAS), pages 433-440, 2012.
S. Devlin, L. Yliniemi, D. Kudenko, and K. Tumer.
Potential-based difference rewards for multiagent
reinforcement learning. In Proceedings of the 13th
International Conference on Autonomous Agents and

19

(7l

(8]

(9]

(10]

(11]

(12]

(13]

(14]

(15]

(16]

(17]

(18]

(19]

20]

(21]

Multiagent Systems (AAMAS), pages 165-172, 2014.
P. Mannion, J. Duggan, and E. Howley. An
experimental review of reinforcement learning
algorithms for adaptive traffic signal control. In

L. McCluskey, A. Kotsialos, J. P. Mueller, F. Kluegl,
O. Rana, and R. Schumann, editors, Autonomic Road
Transport Support Systems, Autonomic Systems.
Birkhauser/Springer, 2016 (in press).

P. Mannion, K. Mason, S. Devlin, J. Duggan, and

E. Howley. Multi-objective dynamic dispatch
optimisation using multi-agent reinforcement learning.
In Proceedings of the 15th International Conference on
Autonomous Agents and Multiagent Systems
(AAMAS), May 2016 (in press).

K. Mason. Avoidance techniques & neighbourhood
topologies in particle swarm optimisation. Master’s
thesis, National University of Ireland Galway, 2015.
A.Y. Ng, D. Harada, and S. J. Russell. Policy
invariance under reward transformations: Theory and
application to reward shaping. In Proceedings of the
Sizteenth International Conference on Machine
Learning, ICML 99, pages 278-287, San Francisco,
CA, USA, 1999. Morgan Kaufmann Publishers Inc.
M. L. Puterman. Markov Decision Processes: Discrete
Stochastic Dynamic Programming. John Wiley &
Sons, Inc., New York, NY, USA, 1st edition, 1994.

J. Randlgv and P. Alstrgm. Learning to drive a
bicycle using reinforcement learning and shaping. In
Proceedings of the Fifteenth International Conference
on Machine Learning, ICML 98, pages 463-471, San
Francisco, CA, USA, 1998. Morgan Kaufmann
Publishers Inc.

Y. Shoham, R. Powers, and T. Grenager. If
multi-agent learning is the answer, what is the
question? Artificial Intelligence, 171(7):365-377, 2007.
A. E. Smith, D. W. Coit, T. Baeck, D. Fogel, and

Z. Michalewicz. Penalty functions. Evolutionary
computation, 2:41-48, 2000.

K. Tumer and A. Agogino. Distributed agent-based air
traffic flow management. In Proceedings of the 6th
International Conference on Autonomous Agents and
Multiagent Systems (AAMAS), pages 330-337,
Honolulu, HI, May 2007.

D. C. Walters and G. B. Sheble. Genetic algorithm
solution of economic dispatch with valve point
loading. Power Systems, IEEE Transactions on,
8(3):1325-1332, 1993.

C. J. Watkins and P. Dayan. Technical note:
Q-learning. Machine Learning, 8(3-4):279-292, 1992.
M. Wiering and M. van Otterlo, editors.
Reinforcement Learning: State-of-the-Art. Springer,
2012.

D. H. Wolpert and K. Tumer. Collective intelligence,
data routing and braess’ paradox. Journal of Artificial
Intelligence Research, pages 359387, 2002.

M. Wooldridge. Introduction to Multiagent Systems.
John Wiley & Sons, Inc., New York, NY, USA, 2001.
L. Yliniemi and K. Tumer. Multi-objective multiagent
credit assignment through difference rewards in
reinforcement learning. In Simulated Evolution and
Learning, pages 407-418. Springer International
Publishing, 2014.

Avoiding the Tragedy of the Commons
using Reward Shaping

Patrick Mannion
Discipline of Information
Technology
National University of Ireland
Galway
p.mannion3@nuigalway.ie

Jim Duggan
Discipline of Information
Technology
National University of Ireland
Galway

jim.duggan@nuigalway.ie

ABSTRACT

In a Multi-Agent System (MAS), multiple agents act au-
tonomously in a common environment. Agents in compet-
itive MAS are self-interested, so they typically come into
conflict with each other when trying to achieve their own
goals. One such example is that of multiple agents shar-
ing a common resource, where each agent seeks to maximise
its own gain without consideration for the welfare of other
agents in the system. In the case of a scarce resource, over-
exploitation occurs when all agents follow a greedy strat-
egy. This can have disastrous consequences, in some cases
damaging the resource to the detriment of all agents in the
system. This scenario is referred to as the Tragedy of the
Commons. We introduce the Tragic Commons Domain as a
means to study resource dilemmas using the MAS paradigm,
and apply Reinforcement Learning (RL) with various credit
assignment techniques to learn solutions to the problem. We
also investigate Potential-Based Reward Shaping (PBRS) as
a possible mechanism to discourage over-exploitation of a re-
source by greedy agents. Our experimental work shows that
PBRS can be used to guide self-interested RL agents to-
wards policies which both conserve resources and maximise
collective gains in resource dilemmas. Furthermore, we find
that self-interested agents learning with appropriate heuris-
tics provided by PBRS reach a level of performance which is
comparable to that of agents which are explicitly designed
to maximise collective gains.

1. INTRODUCTION

In a Multi-Agent System (MAS), multiple agents act au-
tonomously in a common environment. Agents in a MAS
may be cooperative, competitive, or a may exhibit elements
of both behaviours. Agents in a cooperative MAS are de-
signed to work together to achieve a system-level goal [22],
whereas agents in a competitive MAS are self-interested
and may come into conflict with each other when trying
to achieve their own individual goals. Numerous complex,
real world systems have been successfully optimised using
the MAS framework, including air traffic control [15], traffic
signal control [9], electricity generator scheduling [10], and

20

Sam Devlin
Department of Computer
Science
University of York

UK
sam.devlin@york.ac.uk

Enda Howley
Discipline of Information
Technology
National University of Ireland
Galway

ehowley@nuigalway.ie

data routing in networks [20], to name a few examples.

Reinforcement Learning (RL) has proven to be success-
ful in developing suitable joint policies for cooperative MAS
in all of the problem domains mentioned above. RL agents
learn by maximising a scalar reward signal from the envi-
ronment, and thus the design of the reward function directly
affects the policies learned. The issue of credit assignment
in Multi-Agent Reinforcement Learning (MARL) is an area
of active research with numerous open questions. Reward
shaping has been investigated as a mechanism to guide ex-
ploration in both single- and multi-agent RL problems, with
promising results. Potential-Based Reward Shaping (PBRS)
is a form of reward shaping that provides theoretical guar-
antees while guiding agents using heuristic knowledge about
a problem.

In this paper we explore the question of how best to utilise
a common resource using the MAS paradigm. When mul-
tiple self-interested agents share a common resource, each
agent seeks to maximise its own gain without consideration
for the welfare of other agents in the system. In the case of
a scarce resource, over-exploitation occurs when all agents
follow a greedy strategy. This can have disastrous conse-
quences, in some cases damaging the resource to the detri-
ment of all agents in the system. This scenario is referred to
as the Tragedy of the Commons. We introduce the Tragic
Commons domain as a means to study resource dilemmas
using the MAS paradigm. The Tragic Commons Domain is
a Stochastic Game which is inspired by both N-player dilem-
mas and resource dilemmas from the field of Game Theory.
We apply Reinforcement Learning (RL) with various credit
assignment techniques to learn solutions to the problem. We
also investigate Potential-Based Reward Shaping as a possi-
ble mechanism to discourage over-exploitation of a resource
by greedy agents.

The contributions of this paper are as follows: 1) We intro-
duce the Tragic Commons Domain as a testbed for MARL
research into resource dilemmas; 2) We evaluate the suit-
ability of joint policies learned under various different MARL
credit assignment structures for this problem; 3) We demon-
strate empirically that PBRS can be used to encourage self-
interested agents towards policies which maximise both in-

dividual and collective gains in resource dilemmas, and that
self-interested agents learning with appropriate heuristics
provided by PBRS reach a level of performance which is
comparable to that of agents which are explicitly designed
to maximise collective gains.

In the next section of this paper, we discuss the neces-
sary terminology and relevant literature. We then describe
the Tragic Commons environment, and the resource dilem-
mas which inspired it. The following section presents our
experimental results, and we then conclude our paper with
a discussion of our findings and possible future extensions
to this work.

2. RELATED WORK

2.1 Reinforcement Learning

Reinforcement Learning (RL) is a powerful Machine Learn-
ing paradigm, in which autonomous agents have the capa-
bility to learn through experience. An RL agent learns in an
unknown environment, usually without any prior knowledge
of how to behave. The agent receives a scalar reward signal r
based on the outcomes of previously selected actions, which
can be either negative or positive. Markov Decision Pro-
cesses (MDPs) are considered the de facto standard when
formalising problems involving a single agent learning se-
quential decision making [18]. A MDP consists of a reward
function R, set of states S, set of actions A, and a transi-
tion function T [12], i.e. a tuple < S, A, T, R >. When in
any state s € S, selecting an action a € A will result in the
environment entering a new state s’ € S with probability
T(s,a,s’) € (0,1), and give a reward r = R(s,a, s').

An agent’s behaviour in its environment is determined by
its policy w. A policy is a mapping from states to actions
that determines which action is chosen by the agent for a
given state. The goal of any MDP is to find the best policy
(one which gives the highest expected sum of discounted re-
wards) [18]. The optimal policy for a MDP is denoted 7*.
Designing an appropriate reward function for the environ-
ment is important, as an RL agent will attempt to maximise
the return from this function, which will determine the pol-
icy learned.

RL can be classified into two paradigms: model-based
(e.g. Dyna, Rmax) and model-free (e.g. Q-Learning, SARSA).
In the case of model-based approaches, agents attempt to
learn the transition function 7, which can then be used when
making action selections. By contrast, in the model-free ap-
proach knowledge of T is not a requirement. Model-free
learners instead sample the underlying MDP directly in or-
der to gain knowledge about the unknown model, in the form
of value function estimates (Q values). These estimates rep-
resent the expected reward for each state action pair, which
aid the agent in deciding which action is most desirable to
select when in a certain state. The agent must strike a bal-
ance between exploiting known good actions and exploring
the consequences of new actions in order to maximise the
reward received during its lifetime. Two algorithms that
are commonly used to manage the exploration exploitation
trade-off are e-greedy and softmax (Boltzmann) [18].

Q-Learning [17] is one of the most commonly used RL al-
gorithms. It a model-free learning algorithm that has been
shown to converge to the optimum action-values with prob-
ability 1, so long as all actions in all states are sampled in-
finitely and the action-values are represented discretely [16].

21

In Q-Learning, the Q values are updated according to the
equation below:

Q(s,0) « Q(s,0) + alr + ymax Q(s',a') = Q(s,a)] (1)

where o € [0,1] is the learning rate and v € [0, 1] is the
discount factor.

2.2 Multi-Agent Reinforcement Learning

The single-agent MDP framework becomes inadequate when
we consider multiple autonomous learners acting in the same
environment. Instead, the more general Stochastic Game
(SG) may be used in the case of a MAS [2]. A SG is defined
as a tuple < S, A1..»,T,Ri..n. >, where n is the number
of agents, S is the set of states, A; is the set of actions for
agent ¢ (and A is the joint action set), T is the transition
function, and R; is the reward function for agent 1.

The SG looks very similar to the MDP framework, apart
from the addition of multiple agents. In fact, for the case
of n =1 a SG then becomes a MDP. The next environment
state and the rewards received by each agent depend on the
joint action of all of the agents in the SG. Note also that each
agent may receive a different reward for a state transition,
as each agent has its own separate reward function. In a SG,
the agents may all have the same goal (collaborative SG),
totally opposing goals (competitive SG), or there may be
elements of collaboration and competition between agents
(mixed SG).

One of two different approaches is typically used when RL
is applied to MAS: multiple individual learners or joint ac-
tion learners. In the former case multiple agents deployed
into an environment each use a single-agent RL algorithm,
whereas joint action learners use multi-agent specific algo-
rithms which take account of the presence of other agents.
When multiple self-interested agents learn and act together
in the same environment, it is generally not possible for all
agents to receive the maximum possible reward. Therefore,
MAS are typically designed to converge to a Nash Equilib-
rium [14]. While it is possible for multiple individual learners
to converge to a point of equilibrium, there is no theoretical
guarantee that the agents will converge to a Pareto optimal
joint policy.

2.3 Reward Shaping

RL agents typically learn how to act in their environment
guided by the reward signal alone. Reward shaping provides
a mechanism to guide an agent’s exploration of its environ-
ment, via the addition of a shaping signal to the reward
signal naturally received from the environment. The goal of
this approach is to increase learning speed and/or improve
the final policy learned. Generally, the reward function is
modified as follows:

R =R+F (2)

where R is the original reward function, F' is the additional
shaping reward, and R’ is the modified reward signal given
to the agent.

Empirical evidence has shown that reward shaping can be
a powerful tool to improve the learning speed of RL agents
[13]; however, it can have unintended consequences. A clas-
sic example of reward shaping gone wrong is reported by
Randlgv and Alstrgm [13]. The authors designed an RL

agent capable of learning to cycle a bicycle towards a goal,
and used reward shaping to speed up the learning process.
However, they encountered the issue of positive reward cy-
cles due to a poorly designed shaping function. The agent
discovered that it could accumulate a greater reward by cy-
cling in circles continuously to collect the shaping reward
encouraging it to stay balanced, than it could by reach-
ing the goal state. As we discussed earlier, an RL agent
will attempt to maximise its long-term reward, so the pol-
icy learned depends directly on the reward function. Thus,
shaping rewards in an arbitrary fashion can modify the op-
timal policy and cause unintended behaviour.

Ng et al. [11] proposed Potential-Based Reward Shaping
(PBRS) to deal with these shortcomings. When implement-
ing PBRS, each possible system state has a certain potential,
which allows the system designer to express a preference for
an agent to reach certain system states. For example, states
closer to the goal state of a problem domain could be as-
signed higher potentials than those that are further away.
Ng et al. defined the additional shaping reward F' for an
agent receiving PBRS as shown in Eqn. 3 below:

F(s,s") = v®(s) — (s) 3)

where ®(s) is the potential function which returns the
potential for a state s, and +y is the same discount factor used
when updating value function estimates. PBRS has been
proven not to alter the optimal policy of a single agent acting
in infinite-state and finite-state MDPs [11], and thus does
not suffer from the problems of arbitrary reward shaping
approaches outlined above. In single agent RL, even with a
poorly designed potential function, the worst case is that an
agent may learn more slowly than without shaping but the
final policy is unaffected.

However, the form of PBRS proposed by Ng et al. can
only express a designer’s preference for an agent to be in
a certain state, and therefore cannot make use of domain
knowledge that recommends actions. Wiewieora et al. [19]
proposed an extension to PBRS called Potential Based Ad-
vice, that includes actions as well as states in the potential
function. The authors propose two methods of Potential-
Based Advice: Look-Ahead Advice and Look-Back Advice.
The former method defines the additional reward received
F as follows:

F(s,a,s',a") = y®(s',a") — ®(s,a) (4)

Wiewieora et al. [19] provided a proof of policy invariance
for Look-Ahead Advice for single agent learning scenarios.
No corresponding proof has been provided for Look-Back
Advice, although empirical results suggest that this method
also does not alter the optimal policy in single agent learning
scenarios. To maintain policy invariance when using Look-
Ahead Advice, the agent must choose the action that has
the maximum sum of both Q-value and potential:

m(s) = argmaza(Q(s,a) + ®(s,a)) (5)

where 7(s) is the agent’s policy in state s (the action that
will be chosen by the agent in state s).

We will use Wieiwora’s Look-Ahead Advice to test action-
based heuristics in the experimental section of this paper.
From this point forth, we will use the abbreviations sPBRS
and aPBRS to refer to PBRS approaches with state-based

22

and action-based potential functions respectively.

In MARL, work by Devlin and Kudenko [5] proved that
PBRS does not alter the set of Nash equilibria of a SG.
Furthermore, Devlin and Kudenko [6] also proved that the
potential function can be changed dynamically during learn-
ing, while still preserving the guarantees of policy invariance
and consistent Nash equilibria. PBRS does not alter the set
of Nash equilibria of a MAS, but it can affect the joint policy
learned. It has been empirically demonstrated that agents
guided by a well-designed potential function can learn at an
increased rate and converge to better joint policies, when
compared to agents learning without PBRS [4]. However,
with an unsuitable potential function, agents learning with
PBRS can converge to worse joint policies than those learn-
ing without PBRS.

2.4 Multi-Agent Credit Assignment Structures

Here we introduce the MARL credit assignment struc-
tures that we will evaluate on the Tragic Commons domain.
Two typical reward functions for MARL exist: local rewards
unique to each agent and global rewards representative of
the group’s performance. In addition to these basic credit
assignment structures, we also evaluate the performance of
several other shaped reward functions.

A local reward (L;) is based on the utility of the part of
a system that agent ¢ can observe directly. Individual agents
are self-interested, and each will selfishly seek to maximise
its own local reward signal, often at the expense of global
system performance when locally beneficial actions are in
conflict with the optimal joint policy.

A global reward (G) provides a signal to the agents
which is based on the utility of the entire system. Rewards of
this form encourage all agents to act in the system’s interest,
with the caveat that an individual agent’s contribution to
the system performance is not clearly defined. All agents
receive the same reward signal, regardless of whether their
actions actually improved the system performance.

A difference reward (D;) is a shaped reward signal that
aims to quantify each agent’s individual contribution to the
system performance [21]. The unshaped reward is equal to
G(z), and the shaping term is —G(z—;). Formally:

Di(z) = G(2) - Glz-1) (6)
where D; is the reward received by agent i, G(2) is the
global system utility, and G(z—;) is the global utility for
a theoretical system without the contribution of agent 3.
Here z is a general term that may represent either states
or state-action pairs, depending on the specific application.
Difference rewards are a well-established shaping methodol-
ogy, with many successful applications in MARL (e.g. [10,
15, 20]). However, they do not provide the same theoretical
guarantees as potential-based shaping approaches, and thus
their use may modify the set of Nash equilibria of a SG.
Counterfactual as Potential (CaP), proposed by De-
vlin et al. [7], is an automated method of generating multi-
agent potential functions using the same knowledge repre-
sented by difference rewards. CaP automatically assigns po-
tentials to states using the counterfactual term G(z—;), so
that ®(s) = G(z—;). In this framework, the unshaped re-
ward R(s,a,s’) = G(s,a,s’), and the shaping reward F (s, s")
is calculated as normal in PBRS according to Eqn. 3. As
®(s) for agent 7 is in fact based on the state of the other
agents in the system, the potential function is dynamic, and

CaP is thus an instance of Dynamic PBRS [6]. CaP there-
fore preserves the guarantee of consistent Nash equilibria,
while incorporating knowledge based on difference rewards
in an automated manner. According to the proof of necessity
for PBRS [11], there must exist a problem domain for which
difference rewards alter the Nash equilibria of the system [7].
For applications that specifically require the guarantees of
PBRS, CaP may be a viable alternative to D, as it benefits
from the theoretical properties of PBRS whilst leveraging
the same information that is represented by D.

3. THE TRAGIC COMMONS DOMAIN

In this section we introduce the Tragic Commons Domain
(TCD), a Stochastic Game designed with the intent of study-
ing resource dilemmas using the MAS paradigm. As men-
tioned earlier, this domain was inspired by N-player dilem-
mas and resource dilemmas from the field of Game Theory.
An example of a simple dilemma is the Prisoner’s Dilemma
[1], a well-studied problem in which two players (agents)
have the options to either cooperate or defect. Mutual co-
operation results in the highest global utility; however if one
player defects he receives a higher reward, while the coop-
erating player receives the sucker’s payoff. If both players
choose to defect, they both receive a low payoff. The princi-
ples of the Prisoner’s Dilemma can be extended to N-player
dilemmas, where N players must choose to cooperate or de-
fect [1].

Resource dilemmas are an example of an N-player dilemma,
where multiple self-interested agents share a common re-
source, and each seeks to maximise its own returns. Agents
may cooperate to conserve the resource and utilise it in a sus-
tainable manner, or they may defect and selfishly attempt
to extract the maximum value possible from the resource.
When a majority of agents act conservatively, there is an in-
centive for agents to defect so that they will receive a better
than average payoff.

However, as more agents choose to defect the resource be-
comes over-exploited, and the global payoff is less than if
all agents cooperate. Furthermore, when over-exploitation
becomes the norm there is no incentive for a self-interested
agent to act conservatively; to do so would reduce the in-
dividual’s payoff. The dominant strategy is thus to defect
but, paradoxically, if all agents cooperate they maximise the
collective benefit, and each does better than if all play the
dominant strategy.

There are numerous real-world examples of resource or
commons dilemmas; any natural resource that is owned and
used in common by multiple entities presents a dilemma of
how best to utilise it in a sustainable manner. Examples
include fish stocks, wildlife, water resources, woodlands and
common pastures. There are also examples of negative com-
mons, e.g. atmospheric pollution or fraudulent activities,
where an individual may benefit by damaging a common
resource to the detriment of all.

Previous research into commons dilemmas has used ap-
proaches such as evolutionary computation [8] and learning
automata [3] to develop cooperation among agents. In this
empirical study, we explore the possibility of using PBRS to
encourage cooperative strategies among self-interested RL
agents. Agents learning using L are purely self-interested,
and seek to maximise their own utility. As a comparison and
to provide an upper bound on possible performance, we have
also tested agents using reward functions that are explicitly

23

designed to maximise the system utility (G and D).

In the Tragic Commons Domain, N agents each have the
right to graze their livestock in a common pasture. At each
timestep, the agents decide how many of their own animals
will graze in the commons until the next timestep. Thus
the action set for each agent is A = {@min, ..., Gmaa }, Where
Amin and Amaez correspond to the minimum and maximum
number of animals that each agent is allowed to graze in the
commons. The state for each agent is defined as the number
of its own animals currently grazing in the commons. We
define the occupancy of the commons ¢ as the sum of the
animals placed in the commons by all agents n € N at any
particular time:

n=N

czan (7)

Animals left grazing in the commons will increase in value
between timesteps. We define x as the increase in value for
an animal left grazing in the commons for one timestep.
However, there is a maximum number of animals the com-
mons can sustain without deterioration from overgrazing.
The capacity of the commons 1) is defined as the number of
animals which can sustainably graze the commons without
causing damage. Animals left grazing in the commons when
it is at or below capacity will increase in value by the max-
imum Xmaez. When the commons is over capacity, animals
increase in value by a lower rate due to the lower quantity
and quality of food available. The value of x is related to
the occupancy of the commons by the following equation:

Xmazx if ¢ <= 1/)
(Xmaz — Xmin) X (¢ — 1) .
— otherwise
Smax — w

x(¢) =

Xmaz
(®)

Thus, the global benefit is maximised when ¢ = 9, as all
animals in the commons increase in value by the maximum
rate. Values of ¢ that are less than v do not utilise the re-
source to its full potential, whereas values of ¢ greater than
1) result in damage to the resource, and a corresponding de-
crease in the collective benefit. Agents which select actions
less than or equal to % are acting in a fair and conservative
manner, analogously to the agents who choose to cooper-
ate in the earlier example. Whereas agents who choose ac-
tions greater than % are acting in an unfair and exploitative
manner, similarly to agents who choose to defect in a classic
N-Player dilemma.

We use the commons value as a measure for the system
utility, where the commons value for an episode is the sum of
the products of x and ¢ for each timestep. The relationship
between the commons value and ¢ for the parameter values
that we have chosen for our experiments is shown in Fig. 1.

The local reward for a self-interested agent i is calculated
based on the added value per animal multiplied by the num-
ber of animals the agent currently has in the commons. For-
mally:

Li(siv iy 5;) = X(Cl)s; (9)

The global reward for a self-interested agent is calculated

based on the added value per animal multiplied by the total

number of animals in the commons. This is a per-timestep

version of the commons value metric that is used to measure
overall episode performance. Formally:

90000 -

80000

70000 -

60000

50000 -

40000

Commons Value ($)

30000 -
20000

10000 -

0 20 40 60 80 100 120 140
Occupancy

Figure 1: Occupancy vs. commons value for an entire
episode of the Tragic Commons Domain

G(s,a,8") = x(<)¢ (10)

The counterfactual for agent i, to be used with D and
CaP, is calculated by assuming that the agent chose the
same action as in the previous timestep i.e. a = s = s’. This
means that a counterfactual occupancy ¢(z—;) and a counter-
factual animal value x(z—;) must be calculated. The coun-
terfactual term is then calculated as the product of ¢(z—;)
and x(z—;). Formally:

S(z—i) = i Sn + i (11)

i
x(z-i) = x(s(z-1)) (12)
G(z-i) = x(2-i)s(2-4) (13)

3.1 PBRS Heuristics

To explore the effectiveness of PBRS in this domain, we
apply three different manual heuristics in addition to the
automated CaP heuristic. Each heuristic is expressed in
both a state-based and action-based form. The heuristics
used are:

e Fair: Agents are encouraged to act in a fair manner,
where each agent is encouraged to graze the optimal
number of animals (ie. %) in the commons. This
heuristic is expected to perform extremely well, and
will demonstrate the effect of PBRS when advice can
be given about the optimal policy.

YXmaa = P
(s) = N "°TN (14)
0 otherwise
YXmaz fa— P
®(s,a) = N NYTN (15)
0 otherwise

e Opportunistic: Agents opportunistically seek to utilise

any spare capacity available in the commons. As the

24

available spare capacity is dependent on the joint ac-
tions of all agents in the system, the value of this po-
tential function changes over time. Thus, this heuristic
is an instance of dynamic PBRS [6]. This is a weaker
shaping than Fair, and is included to demonstrate the
effect of PBRS with a sub-optimal heuristic, for con-
texts where the optimal policy is not known.

D(s) = {SX’”” o<y (16)

0 otherwise

O(s,a) = (17)

0 otherwise

{G/Xmaz ife<e

e Greedy: Agents are encouraged to behave greedily,
where each agent seeks to graze the maximum possible
number of animals in the commons. This is an exam-
ple of an extremely poor heuristic, and is expected to
reduce the performance of all agents receiving it.

Smazxz Xmaz if S = Smax
P(s) = 18
() {0 otherwise (18)

max max .f = maxr
O(s,a) = fmazX a—a (19)
0 otherwise

3.2 Experimental Procedure

We test two variations of the TC domain: a single-step
version with num_timesteps = 1 and a multi-step version
with num_timesteps = 12. The other experimental pa-
rameters used were as follows: num_episodes = 20,000,
N = 20, ¥ = 80, Xmaz = $1000/num_timesteps, Xmin =
$400/num_timesteps, amin = Smin = 0, Gmaz = Smaz = 6,
Smaz = 120 (from Eqn. 7). All agents begin each episode
with their initial state set to 0 (i.e. no animals grazing in
the commons).

We apply multiple individual Q-Learning agents to the
Tragic Commons Domain defined above, learning with credit
assignment structures L, G, D, along with various shaping
heuristics. The learning parameters for all agents are set as
follows: a = 0.20, v = 0.90, € = 0.10. Both « and € are re-
duced by multiplication with their respective decay rates at
the end of each episode, with alpha_decay_rate = 0.9999 and
epsilon_decay_rate = 0.9999. These values were selected fol-
lowing parameter sweeps to determine the best performing
settings. Each agent’s Q values for all state action pairs are
initialised to 0 at the start of each experimental run.

Along with the MARL approaches tested, we have also
conducted experiments with three simple agent types: Opti-
mal, Random, and Greedy. Optimal agents always select the
action equal to %, and thus will maximise the global bene-
fit. The random agents select actions randomly with equal
probability. The greedy agents always select amqq i.€. they
play the dominant strategy, which is to graze as many ani-
mals as possible in the comm