
Adaptive and Learning Agents Workshop

Proceedings of ALA 2016

May 9-10, 2016

TABLE OF CONTENTS

Papers accepted as LONG presentation

Autonomous UAV Landing in Windy Conditions with MAP-Elites
S.A. Adibi, S. Forer, J. Fries, and L. Yliniemi . 4

Dynamic Economic Emissions Dispatch Optimisation using Multi-Agent Reinforcement Learn-
ing
P. Mannion, K. Mason, S. Devlin, J. Duggan, and E. Howley 12

Avoiding the Tragedy of the Commons using Reward Shaping
P. Mannion, S. Devlin, J. Duggan, and E. Howley . 20

Collaboration in Ad Hoc Teamwork: Ambiguous Tasks, Roles, and Communication
J. Grizou, S. Barrett, P. Stone, and M. Lopes . 29

Half Field Offense: An Environment for Multiagent Learning and Ad Hoc Teamwork
M. Hausknecht, P. Mupparaju, S. Subramanian, S. Kalyanakrishnan, and P. Stone 36

Deep Imitation Learning for Parameterized Action Spaces
M. Hausknecht, Y. Chen, and P. Stone . 43

Optimal Adaptive Market-Making with Inventory: A Symbolic Closed-form Solution
S. Kinathil, S. Sanner, S. Das, and N. Della Penna . 50

Multiplayer Ultimatum Game in Populations of Autonomous Agents
F.P. Santos, F.C. Santos, F.S. Melo, A. Paiva, and J.M. Pacheco 58

Limits and Limitations of No-Regret Learning in Games
B. Monnot and G. Piliouras . 66

New Game-theoretic Anti-Poaching Solution Methods for Wildlife Protection
T.H. Nguyen, A. Sinha, S. Gholami, A. Plumptre, L. Joppa, M. Tambe, M. Driciru, F.
Wanyama, A. Rwetsiba, R. Critchlow, and C.M. Beale . 74

Papers accepted as SHORT presentation

Applying Multi-Agent Reinforcement Learning to Watershed Management
K. Mason, P. Mannion, J. Duggan, and E. Howley . 83

Feature Selection as a Multiagent Coordination Problem
K. Malialis, J. Wang, G. Brooks, and G. Frangou . 91

Human Guided Ensemble Learning in StarCraft
T. Verstraeten, R. Rădulescu, Y. Jadoul, T. Jaspers, R. Conjaerts, T. Brys, A. Harutyun-
yan, P. Vrancx, and A. Nowé . 99

2

Learning Agents for Iterative Voting
F.S. Perotto, S. Airiau, and U. Grandi . 106

Mobility Effects on the Evolution of Co-operation in Emotional Robotic Agents
J. Collenette, K. Atkinson, D. Bloembergen, and K. Tuyls 114

TLDA: Transfer Learning via Domain Adaptation in Continuous Reinforcement Learning
Domains
F. Shoeleh and M. Asadpour . 122

Work in Progress and Outlook papers

Reinforcement Learning from Demonstration and Human Reward
G. Li and B. He . 130

Work in Progress: Lifelong Learning for Disturbance Rejection on Mobile Robots
D. Isele, J.M. Luna, E. Eaton, G.V. de la Cruz, J. Irwin, B. Kallaher, and M.E. Taylor . . 136

Outlook: Using Awareness to Promote Richer, More Human-Like Behaviors in Artificial
Agents
L. Yliniemi and K. Tumer . 141

3

Autonomous UAV Landing in Windy Conditions with
MAP-Elites

Sierra A. Adibi
University of Nevada, Reno
sierra.adibi@gmail.com

Scott Forer
University of Nevada, Reno
sforer580@gmail.com

Jeremy Fries
University of Nevada, Reno
friesjeremy@gmail.com

Logan Yliniemi
University of Nevada, Reno

logan@unr.edu

ABSTRACT
With the recent increase in the use of UAVs comes a surge of in-
experienced aviators, who may not have the requisite skills to re-
act appropriately if weather conditions quickly change while these
UAVs are in flight. This creates a dangerous situation, in which the
pilot cannot safely land the vehicle. In this work we examine the
use of the MAP-Elites algorithm to search for sets of weights for
use in an artificial neural network which directly controls the thrust
and pitching torque of a simulated 3-degree of freedom (2 linear, 1
rotational) fixed-wing UAV, such that it obtains a smooth landing
profile. We then examine the use of the same algorithm in high-
wind conditions, with gusts up to 30 knots.

Our results show that MAP-Elites is an effective method for
searching for control policies, and by evolving two separate con-
trollers and switching which controller is active when the UAV is
near ground level, we can produce a wider variety of phenotypic
behaviors. The best controllers achieved landing at a vertical speed
of less than 1 [m/s], and at an approach angle of less than 1 degree.

Categories and Subject Descriptors
I.2.6 [Computing methodologies]: [Artificial intelligence]—Learning

General Terms
Algorithms, Experimentation, Performance

Keywords
MAP-Elites; Unmanned Aerial Vehicles

1. INTRODUCTION
In recent years, Unmanned Aerial Vehicles (UAVs) have seen a

surge in popularity in a wide range of applications, from military to
recreational, due largely to their expanding capabilities. With this
rise in popularity comes a drastic increase in the number of aircraft
piloted by inexperienced operators and a higher rate of incidents
involving unmanned craft [23].

In order to mitigate some of the risk brought on by the pro-
jected 1.6 million UAVs sold to hobbyists in 2015, the Federal
Aviation Administration (FAA) implemented a series of regulations
designed to promote safety in the United States’ airspace [2]. De-
spite these efforts, licenses are not required for hobbyists operating
small UAVs. When the tactical understanding of flight mechanics
that comes with pilot training is absent, further safety precautions
are necessary.

Human error is well understood to be a contributing factor in
the majority of aviation accidents [19, 25], and for inexperienced
pilots, adverse weather conditions significantly increase the risk of
incident [11]. In particular, landing a fixed-wing aircraft in high-
wind conditions can cause a significant number of problems for a
pilot who is not familiar with the appropriate procedures [1]. For
those UAV hobbyists seeking the longer range and higher speeds
offered by fixed-wing aircraft, these difficulties can translate into
very distinct risks.

In this work, we use a model of this scenario as a challenging
testbed for examining the use of the MAP-Elites algorithm [21] to
search for successful control policies for autonomous landing, even
in high-wind situations. Our model consists of a three degree of
freedom (DOF) physics-based flight simulator (two linear DOF, x
and z, and one rotational DOF about the centroid of the wing of the
UAV, φ) over the Euclidean plane. With further study, this could be
developed into a system which would help mitigate the risks from
inexperienced pilots in the case of a difficult landing scenario.

The major contributions of this work are to:

• Investigate the use of the MAP-Elites algorithm in a highly
dynamic UAV control environment including gusting wind.

• Develop a method for improving the phenotypic diversity
discovered by the MAP-Elites Algorithm through near-ground
control switching (NGCS).

• Provide a set of recommendations for choosing phenotypes
for MAP-Elites in highly dynamic problems.

The rest of this paper is organized as follows: Section 2 de-
scribes the necessary background on Artificial Neural Networks,
MAP-Elites, and flight mechanics. Section 3 provides the details
of the physics-based flight simulator we used. Section 4 describes
our simulator verification process. Section 5 describes the exper-
imental parameters for the flight simulator and MAP-Elites in this
work. Section 6 presents our experimental results for UAV control
with MAP-Elites in no- and high-wind situations, with and without
NGCS. Finally, Section 7 concludes the work, and addresses lines
of future research.

2. BACKGROUND
In this paper, we propose the use of an Artificial Neural Network

(ANN) in conjunction with the MAP-Elites search algorithm to de-
velop robust controllers for fixed-wing landing in a variety of con-
ditions. This section includes the necessary background on ANNs
(Section 2.1), MAP-Elites (Section 2.2), and flight mechanics (Sec-
tion 2.3) and situates our work within the literature (Section 2.4).

4

2.1 Artificial Neural Networks (ANNs)
An ANN is a powerful function approximator, which has been

used in tasks as varied as weather forecasting [20], medical diag-
nosis [6], and dynamic control [18, 28]. Neural networks have also
been successful in many direct control tasks [15, 29]. An ANN is
customized for a particular task through a search for “weights",
which dictate the output of an ANN, given an input.

In this work, we use a single-hidden-layer, fully-connected, feed-
forward neural network. We normalize the state variables input into
the network by using their upper and lower limits so that each state
variable varies on the same scale. The neural network, using nor-
malized state inputs, then calculates the normalized control outputs,
which are then scaled based on the desired bounds for thrust and
torque.

By using a search algorithm, appropriate weights can be found
to increase the ANN’s performance on a measure of fitness. With a
sufficient number of hidden nodes, an ANN is capable of approx-
imating any function [14] if the appropriate weights can be found
through a search method.

2.2 MAP-Elites
MAP-Elites is a search algorithm which has the basic functional-

ity of "illuminating" the search space along low-dimensional phe-
notypes — observable traits of a solution — which can be specified
by the system designer [21]. For an effective search, these pheno-
types do not need to have any specific features, except that they are
of low dimension. MAP-Elites has been successfully used in the
past for: re-training robots to recover performance after damage to
limbs [7], manipulating objects [9], soft robotic arm control, pattern
recognition, evolving artificial life [21], and image generation [22].

MAP-Elites is population-based and maintains individuals based
on their fitness, P , and phenotype, b; Figure 1 shows a simplifica-
tion of the algorithm. The MAP, M, is described by outer limits on
each phenotypic dimension and a resolution along each dimension.
This forms a number of bins, which are differentiated based on one
or more phenotypes. Each bin may only contain an individual, I,
which bears a phenotype within a certain range and may only main-
tain one individual at a time. When multiple individuals exist with

Figure 1: A simple representation of the MAP-Elites algorithm. At
most one individual can be maintained in each bin. After simula-
tion, the blue individual is placed in the same bin as the red indi-
vidual, due to its phenotype, b. If it has a higher fitness than the red
individual, it will be maintained and the red individual discarded.

similar phenotypes, the bin maintains the more fit individual. This
offers protection to individuals which generate unique phenotypes,
as there is likely less competition in these bins. This allows the sys-
tem designer to examine how the fitness surface changes across a
phenotype space, which consists of directly observable behaviors.
MAP-Elites is related to an evolutionary algorithm in that a single
bin that can support n individuals is equivalent to an evolutionary
algorithm with a carrying capacity of n individuals.

Algorithm 1 describes the process that MAP-Elites uses to gen-
erate solutions. This occurs in three stages: "creation", "fill", and
"mutate". The creation stage initializes all of the bins, each of which
can hold a single individual (set of weights to be given to the neural
network for control) within a certain range of phenotypes.

The fill stage consists of generating random individuals, simu-
lating those individuals, and placing them in the appropriate bin
within the map. In the case of two individuals belonging to the
phenotype range of the same bin, the more fit individual survives,
while the other is discarded.

In contrast, during the mutate stage, one of the individuals within
the map is randomly copied, mutated, and simulated. This muta-
tion occurs by changing the individual’s genotype, or one or more
of the numbers that describe the individual (weights of the neural
network). Such a mutation will typically result in a change in phe-
notype evaluation, so the resulting individual may be placed in a
different bin than the parent individual. In this way the map can
continue to be filled during the mutate stage. This stage can con-
tinue until a stopping condition is met; in this work we choose a
preset number of iterations, and examine the final individuals after
this process is complete.

The total number of individuals that can be maintained is equal to
the number of bins (since each bin can support at most one individ-
ual), but in cases of lower phenotypic diversity in the population,
fewer individuals may be maintained, as fewer bins are accessed.

A major benefit of the MAP-Elites algorithm is that it not only
preserves individuals with unique behaviors (because they may ex-
ist in a low-competition bin), but also that it encourages a spread of
behaviors across the phenotype space, which may allow a system
designer to better describe the shape of the fitness surface across
phenotype dimensions.

Algorithm 1: Map-Elites algorithm. The map (M) is pop-
ulated with individuals (I) based on their phenotype (b) and
fitness (P).

Input: NF , NM
Output: M

1 M← InitializeMap()
2 for iter = 1→ NF do

// Fill map loop
3 I ← BuildIndividual()
4 I.{P,b} ← Simulation(I)
5 M← Place(I)
6 for iter = 1→ NM do

// Mutate map loop
7 biter ← RandomBinPhenotype()
8 I ← GetIndividual(M,biter)
9 I′ ← CopyIndividual(I)

10 I′ ← MutateIndividual(I′)
11 I′.{P ′,b′} ← Simulation(I′)
12 M← Place(I′)
13 return Map of solutions M

5

2.3 Flight Mechanics
In this section, we discuss the principles of aerodynamics uti-

lized in the flight simulator [4]. The following theory is used in
conjunction with computational data for a NACA 2412 airfoil, as
calculated by the XFOIL airfoil analysis software [8].

The forces of lift (FL) and drag (FD) on an airfoil are a function
of the axial shear stresses (A) and normal pressure (N), as well as
the angle between the airfoil chord and the velocity vector, known
as the angle of attack (α). Figure 2 depicts the directions that FL
and FD act on the airfoil, as well as the total aerodynamic force,
FA; FL is always directed normal to the direction of the free stream
velocity, V∞, and FD is always in the direction of the V∞. In the
figure, φ represents the pitch of the airfoil with respect to the hori-
zontal, and θ is the angle between V∞ and the horizontal. Equations
1 and 2 describe the method of obtaining FL and FD .

FL = N cosα−A sinα (1)
FD = N sinα+A cosα (2)

These values describe the behavior of an airfoil under a specific set
of conditions, and they are often used in their dimensionless forms,
known as the coefficients of lift (CL) and drag (CD). They are cal-
culated by dividing the forces by the planform area of the wing
(sref) and the free stream dynamic pressure (q∞). Calculations of
sref , q∞, CL, and CD follow:

sref = c · ` (3)

q∞ =
1

2
ρ∞V

2
∞ (4)

CL =
FL

q∞sref
(5)

CD =
FD

q∞sref
(6)

where c is the average chord length of the wing and ρ∞ is the free
stream air density. The force coefficients are thus dependent on the
size and geometry of the wing, as well as the angle of attack, while
remaining independent of the free stream air density and speed.
With previously calculated values for CL and CD for varying α,
FL and FD can be calculated using Equations 7 and 8.

FL =
1

2
· CL · V 2

∞ · ρ∞ · sref (7)

FD =
1

2
· CD · V 2

∞ · ρ∞ · sref (8)

It is an important note that V∞ denotes the speed of the air in
reference to the craft, which is often different from the speed of the

Figure 2: The aerodynamics force vectors acting on the airfoil.

craft with respect to the ground. This difference may be caused by
the presence of wind, as is the case in our simulator.

Fixed-wing aircraft use a system of either engines or propellors
to create thrust, which acts parallel to the craft’s body, denoted as
the âx direction. In addition to controlling pitch, or rotation about
the ây , through use of the elevator, a craft can also control its rota-
tion about the âx, known as roll, and rotation about the âz , known
as yaw. Figure 3 depicts the rigid frame used to describe the air-
craft body. In this work we use a simulator with three DOF: two
linear (x and z) and one rotational (pitch about ây). For an aircraft
to increase the amount of lift it can generate at a given speed, it can
rotate about the ây axis to increase α; Figure 4 displays the values
of CL and CD used for a variety of α in the simulator [8].

In our simulator, we consider aerodynamic forces while α is in
the range of -25◦ to 74◦. Outside of this range, XFOIL did not
provide computations that converge, but these large angles of attack
correspond to stall modes, wherein the wing produces very little
lift. Thus, in this work we neglect the aerodynamic forces when α
is outside this range.

2.4 Related Work
In this work we study the use of the MAP-Elites search algo-

rithm [21] to develop successful weights for neural networks to act
as control policies for a UAV in high-wind conditions. Autonomous
flight and landing of UAVs has been a topic of interest for multiple
decades [10, 13, 16, 28]. As such, here we only provide a small
sample of related works. For a more comprehensive view of au-
tonomous UAV control, we refer the reader to Gautam’s work [12];
for MAP-Elites, the work by Mouret and Clune [21].

Most of the work on autonomous UAV control has consisted of
model-based control schemes, attempting to follow a pre-defined
flight path. These control schemes can be either linear, linear with
regime-switching, or nonlinear [3, 24]. In contrast, in this work we
do not need a system model and instead use a search algorithm to
develop weights for a neural network for model-free control.

Shepherd showed that an evolved neural network can outperform
even a well-tuned PID controller for a quadrotor UAV; the craft
was able to recover from disturbances of up to 180◦ (being turned
upside-down), while a PID controller was only capable of recov-
ering from disturbances of less than 60◦ [26]. In contrast, in this
work we are performing a landing task with a fixed-wing UAV and
using a different search mechanism.

Previous work on MAP-Elites has also been used to search for
neural network weights for various tasks [7, 9, 21]. In this work
we also search for neural network weights; however, the task in
this work has unique dynamics compared to previous MAP-Elites
studies and a strong sequential decision making component.

Figure 3: The rigid frame used to describe the aircraft

6

Figure 4: Plot ofCL andCD for varying α on a NACA 2412 airfoil;
GetCoefficients(α) returns these values.

Algorithm 2: SimulateTimeStep communicates with the
ANN to get the controls for the time step, then returns the new
state, as calculated by the forces acting on the aircraft.

Input: t, St
Output: St+ts

1 {FC ,MC} ← GetControls(St)
2 {V∞, θ} ← GetAirSpeed(ṙx, ṙz)
3 α← GetAttackAngle(θ, St)
4 {CL, CD} ← GetCoefficients(α)
5 {FL, FD} ← CalcAeroForces(CL, CD, V∞)

6 ~FR ←GetVectorComponents(St, θ, FL, FD, FC)

7 St+ts ← DynamicsCalc(St, ~FR,MC)
8 return St+ts

3. FLIGHT SIMULATOR DESIGN
To model UAV flight behavior, a three DOF flight simulator was

designed for two linear and one rotational DOF. The simulator ap-
proximates the effects of aerodynamic forces, while maintaining
realistic aircraft behavior. It operates by receiving thrust and pitch
controls, calculating the aerodynamic and gravitational forces on
the aircraft, combining the forces, and calculating system’s physi-
cal response. All pitching moments caused by aerodynamic forces
are neglected due to the use of trim [5] and CL and CD for vary-
ing α of the aircraft are based on that of a NACA 2412 airfoil, as
predetermined using XFOIL [8].

Algorithm 2, SimulateTimeStep, describes the main func-
tion of the simulator. While the time, t, is less than the maximum
run time, tmax, the simulator provides the current state, St, to the
ANN through the function GetControls and receives the force
and moment applied, FC andMC , respectively. The simulator then
calculates V∞ and θ from the aircraft’s ground speed in the two
linear DOF, ṙx and ṙz , and the wind generator; a typical wind pro-
file for a 30 [s] run can be seen in Fig. 5. Using θ and St, α, CL,
and CD are calculated. After determining the aerodynamic forces
on the aircraft, all of the forces are summed, and the resultant force
vector, ~FR, is put into the function DynamicsCalc along with St
and MC , and the new state, St+ts , is determined.

The function DynamicsCalc, is described in detail in Algo-
rithm 3. The algorithm was designed for scalability, and therefore

Figure 5: One sample of the simulator’s randomly-generated wind;
in this work we center the distribution around a sine function with
amplitude 15 [m/s].

Algorithm 3: DynamicsCalc determines the new state of the
aircraft using Newtonian physics and trapezoidal integration.

Input: St, ~FR,MC

Output: St+ts
1 for each linear DOF, i, do
2 r̈i,t+ts ←

FR,i

m

3 ṙi,t+ts ← ṙi,t +
1
2
· ts · (r̈i,t + r̈i,t+ts)

4 ri,t+ts ← ri,t +
1
2
· ts · (ṙi,t + ṙi,t+ts)

5 for each rotational DOF, j, do
6 φ̈j,t+ts ←

MC,j

Ij

7 φ̇j,t+ts ← φ̇j,t +
1
2
· ts · (φ̈j,t + φ̈j,t+ts)

8 φj,t+ts ← φj,t +
1
2
· ts · (φ̇j,t + φ̇j,t+ts)

9 St+ts ← {~̈rt+ts , ~̇rt+ts , ~rt+ts , ~̈φt+ts , ~̇φt+ts , ~φt+ts}
10 return St+ts

contains two loops: one for calculating linear system responses and
another for calculating rotational system responses. The first loop
runs through an iteration for each linear DOF, i; Newton’s first law
of motion is used to calculate the acceleration, r̈i,t+ts , then the air-
craft’s velocity, ṙi,t+ts , and position, ri,t+ts are calculated using
trapezoidal integration.

The second loop then performs an iteration for each rotational
DOF, j. It calculates the aircraft’s angular acceleration, φ̈j,t+ts ,
and performs trapezoidal integration to calculate the aircraft’s an-
gular velocity, φ̇j,t+ts , and pitch, φj,t+ts . Finally, all of the state
variables form St+ts , and the new state is returned.

4. SIMULATOR VERIFICATION
In order to verify that the flight simulator effectively models

fixed-wing flight, we conducted preliminary experiments to test the
functionality of the aerodynamic forces before introducing the neu-
ral network and MAP-Elites algorithm: a takeoff test and a stable
flight test.

To ensure that the simulator properly calculates aerodynamic
forces, we modeled a fixed-wing takeoff, and compared against the
well understood behavior of a fixed-wing craft. With φ = 0, a
constant thrust of 100 [N] was applied to the aircraft for 60 [s].
After approximately 14 [s], at a speed of 70 [m/s], the aircraft
lifted off, and continued to climb for the remainder of the simula-

7

tion. The simulation was then repeated with φ increased to 5◦, then
10◦with respect to the horizontal. A plot of the horizontal and ver-
tical displacements of the three simulations is shown in Fig. 6. For
the three simulations, as φ increases, the total horizontal displace-
ment required for takeoff to occur decreases, which agrees with
aerodynamic theory. To verify lift for both positive and negative
α, φ was set to -10◦with respect to the horizontal, and the same
test was performed, this time allowing the thrust to act for a total of
eight minutes. Due to the negative coefficient of lift associated with
this negative angle of attack, the aircraft never lifts off, thus vali-
dating the aerodynamic lift forces of the simulator for both positive
and negative α.

For the stable flight test, a force balance was first conducted on
the aircraft to determine its horizontal equilibrium speed and equi-
librium thrust at φ = 0. Through algebraic manipulation, V∞ =
69.3 [m/s] and FC = 8.3 [N] were calculated for steady flight.
These values were then used in the simulator for an aircraft already
in the air, and the result was a bounded system that approached
vz = 0 with a maximum error of less than 0.01 [mm/s].

5. EXPERIMENTAL PARAMETERS
Our experimental runs used the following parameters: the UAV

has a mass of 20 [kg], and a wing area of 0.2 [m2], corresponding to
a wingspan of 1 [m] and chord length of 20 [cm]. It has a rotational
inertia of 20 [kg m2]. We initialize the UAV in low level flight;
it starts 25 [m] above the ground, with a 60 [m/s] x-velocity and
0 [m/s] z-velocity. To encourage landing in the early stages, we
initialize the UAV pitched slightly downward, at approximately 3◦

below horizontal. This allows the aircraft full mobility through the
space: it can climb without bound, and we observed some cases of
the aircraft completing a full loop. The UAV is allowed up to 60
[s] of flight time, though the simulation is cut off when the UAV
touches down or when it reaches 200 [m] above ground level.

Our neural network used for control consisted of 7 state inputs,
5 hidden units, and 2 control outputs. The state variables form the
vector: {t, ṙx, ṙz, rz, φ̇, sin(φ), cos(φ)}, and are normalized using
the ranges {t ∈ −10 : 70, ṙx ∈ 40 : 90, ṙz ∈ −10 : 10, rz ∈
−5 : 30, φ̇ ∈ −0.2 : 0.2, sin(φ) ∈ −0.5 : 0.5, cos(φ) ∈ 0 : 1}.
We used 5 hidden units because this allowed the search algorithm
to discover successful policies while keeping the overall computa-
tion time low. The 2 control outputs are {FC ,MC}, the force of
thrust and moment about the center of the wing to be used for the
dynamics of that time step. The UAV can provide thrust limited in
the range 0:50 [N], and torque in the range 0:5 [Nm].

In our implementation of MAP-Elites, we chose to use two phe-
notype dimensions with a resolution of 10 equally-spaced bins along
each dimension. This results in 100 empty bins at the start of each
experimental trial. We used 50 filling iterations and 1000 mutation

Figure 6: x- vs z-position during the takeoff simulator verification
test for 0◦, 5◦, and 10◦ constant φ.

iterations.
We examined a wide range of possible phenotypes, but found

that the most effective phenotypes were those which averaged val-
ues across a moderate number of timesteps. For example, the final
kinetic energy was a very sensitive phenotype; very small geno-
type changes caused very large changes in the phenotype space. In
contrast, using the average kinetic energy over the last two to three
seconds (20 to 30 timesteps) proved to be more stable. In our results
reported in this paper, we used the following two phenotypes:

• Phenotype 1: Average x-position over the last two seconds
the UAV is in the air, with limits of 200:900 [m].

• Phenotype 2: Average: z-position over the last two seconds
the UAV is in the air, with limits of 0:4 [m].

We arrived at these phenotypic choices after a number of tri-
als using other phenotypes including time-in-air, average x- or z-
velocity over the last two seconds, final orientation, and average
angle of attack over the last two seconds. We found that the final
phenotypes we selected offer an interesting spread of behaviors for
the following reasons: 1) preserving solutions which vary along the
x-position before they land preserves solutions with longer-range
approach behaviors which vary from conservative to aggressive,
and 2) preserving solutions which vary in average z-positions be-
fore they land preserves solutions with close-to-ground behaviors
which range from conservative to aggressive.

To calculate fitness of an individual, we use the angle at which
the aircraft approaches the ground ("glide angle") and the factor
iL. The glide angle is calculated using the x- and z- velocities over
the last 3 [s] in flight, and iL returns a value of 0 if the UAV has
landed and a very large negative number if it has not. The fitness
calculation is shown below:

P =
∑

t=(end−3):end

−
∣∣∣∣atan

(
ṙz,t
ṙx,t

)∣∣∣∣+ iL (9)

During our experiments, we noticed that a very low number of
bins were being filled, no matter how we adjusted the outer limits
of the MAP. We found that this was due to a co-variation between
our phenotype variables. In order to achieve a wider variety of phe-
notype behaviors, as well as to allow the UAV to drastically change
its behavior when near the ground, we developed a near-ground
control switching (NGCS) scheme, in which an individual is de-
scribed not by one set of weights for the neural network, but two
separate sets of weights. The UAV uses one set of weights for the
approach, and when it is less than 5 [m] above ground level and has
a negative velocity in the z-direction the second set of weights are
used. This allows for the UAV to more easily learn the non-linear
behaviors that are necessary for a smooth landing; human pilots
use 3◦ as a rule of thumb for the glide angle before "flaring" when
they are close to the ground, increasing their pitch and thereby their
coefficient of lift, for a softer landing [27].

We performed separate trials with and without wind effects. In
the trials with wind, we created a random distribution around a sine
function with amplitude 15 [m/s] (See Figure 5).

6. RESULTS
We conducted experiments by using MAP-Elites to search for

controllers that provided a smooth landing in four cases: 1) no
wind, no NGCS, 2) with wind, no NGCS, 3) no wind, with NGCS,
and 4) with wind, with NGCS. Specifically, we show:

8

• A typical whole population of final controllers for each case
(Section 6.1; Figures 7–10).
• Average mean and standard deviation (µ, σ) of controller per-

formance across 30 statistical runs (Section 6.2; Table 1).
• The effect of the choice of phenotype on final performance

and recommendations for phenotypes in dynamic domains
(Section 6.3; Figure 11).

In each of the figures, a black path with triangles denotes that the
UAV did not land within the allotted 60 [s], a red path with asterisks
denotes a hard landing with glide angle greater than 3◦, and a blue
path with circles denotes a soft landing with glide angle less than
3◦. The plots reflect the UAV’s x-z flight path.

6.1 Typical Final Population
The most informative way to show the additional complexity of

behaviors that can be learned by using the NGCS technique can
best be seen by the flight profiles themselves. In Figures 7–10, we
show the flight profiles of all members of the final population of a
typical run for each method.

Figure 7 shows the final map population flights in the no NGCS,
no wind case. The controllers that are developed can be easily de-
scribed as "pull up, at various rates". Seven of the generated con-
trollers do not actually land over the 60 [s] of flight time, and in-
stead climb until they reach the height bound, ending the simula-
tion. Even though they are penalized heavily for not landing, they
are protected as they have a sufficiently different phenotype from
the others.

Figure 8 shows the final map population flights in the no NGCS,
windy case. These controllers are also easily described as "pull up,
at various rates". In this case, the controllers are more proficient
at making sure that their final z-location is at ground level, though
this results in the undesirable behavior of "climb, stall, fall". In an
implementation, a system designer would use their knowledge to
choose the best controller to implement, so the inclusion of these
controllers in the final population is not a detriment. However, the
stochastic nature of the wind showcases the primary weakness of
this method: one controller gets as low as 0.05 [m], but then con-
tinues to pull up and climbs without bound.

Table 1: Median number of solutions in the final map, and mean and
standard deviation (µ, σ) of the landing glide angle [◦], landing z-
velocity [m/s], and landing x-velocity [m/s] for each wind-NGCS
combination, and 100 randomly-controlled trials.

I II III IV Rand
Wind No Yes No Yes No
NGCS No No Yes Yes No
Median

of
Solutions

12 13 25 23 N/A

Glide
Angle µ 2.34 2.30 2.28 2.34 13.56

Glide
Angle σ 1.60 1.51 1.30 1.29 10.23

Landing
z-vel. µ 2.83 2.82 2.92 2.99 16.04

Landing
z-vel. σ 1.92 1.81 1.65 1.64 12.10

Landing
x-vel. µ 70.89 70.74 73.59 73.26 65.60

Landing
x-vel. σ 2.46 1.10 3.36 3.09 5.60

Figure 9 shows the final map population flights in the NGCS,
no wind case. The phenotype protections still result in some con-
trollers with the "climb, stall, fall" profile; however, those that get
close enough to the ground that NGCS takes effect have a much
more sophisticated behavior than those without NGCS. These runs
will level off, and sometimes briefly climb, but generally not with-
out bound.

Figure 10 shows the final map population flights in the NGCS,
windy case. These solutions are qualitatively similar to Figure 9,
showing that the NGCS method in particular is good at rejecting
the stochastic effects of the high-winds.

6.2 Case Profiles
We additionally performed 30 statistical trials for each wind,

NGCS combination, as well as 100 flights with random control
inputs. Table 1 shows the number of solutions generated, and the
mean and standard deviation {µ, σ} for the glide angle, landing z-
velocity, and landing x-velocity. The values reported represent the
values for controllers that landed with less than a 40◦ glide angle
(to prevent "climb, stall, fall" outliers from having a high impact on
the σ calculations). In the random case, 60 of the 100 controllers
landed, while 40 climbed without bound.

Figure 7: Case 1 - Final flight profiles for a trial with no NGCS,
with no wind show the largest number of crafts that do not land.

Figure 8: Case 2 - Final flight profiles for a trial with no NGCS,
with wind.

9

Figure 9: Case 3 - Final flight profiles for a trial with NGCS with
no wind.

Figure 10: Case 4 - Final flight profiles for a trial with NGCS with
wind show the largest number of crafts with soft landings.

6.3 Recommendations for MAP-Elites in
Dynamic Problems

Before concluding this work, we collate our experiences with
MAP-Elites in a problem with a strong dynamics component, to
provide guidelines for future researchers expanding the capabilities
of MAP-Elites and related search algorithms in such problems. Our
experiences have supported the following observations:

• Phenotype stability: When a small change in genotype leads
to an extreme change in phenotype, we found that we didn’t
achieve as high of an end performance. In a dynamic prob-
lem, averaging a few points around the time of interest (in
this case the landing time) led to an increase in stability for
the genotype-phenotype mapping. This leads to MAP-Elites
performing more consistently across independent trials.

• Phenotype coupling: When phenotypes are coupled, the co-
variation can prevent certain phenotype spaces in the map
from being filled, or can preserve very low-fitness solutions
for a long period of time.

• Phenotype limits: In this work, if a phenotype was outside
our chosen limits for the map, it would be considered a part
of the nearest bin. This had the benefit of not requiring any
special handling for individuals with phenotypes outside of

Figure 11: Final population flight profiles using the φ phenotypes.

the limits, but also led to the preservation of some solutions
that were well outside of our intended behaviors.

• Strong nonlinearities: If a desirable control scheme has strong
nonlinearities or discontinuities, but the conditions in which
these changes apply are easily described, defining an indi-
vidual as a set of neural network weights can at least allow a
greater spread in the phenotype space, if not increased aver-
age performance.

• Selection for mutation: Choosing the individual to mutate
based on a uniform random over indexes will equally weight
each individual; choosing based on a uniform random over
phenotypes will weight those in rare portions of the pheno-
type space or those at the edges of clusters much more highly
than those individuals that are surrounded in the phenotype
space. We found a clear difference in selection probability,
but not a clear difference in performance when testing both of
these strategies. A fitness-biased selection (which we did not
address in this work) will provide a more-greedy approach,
which might not be beneficial [17].

• Phenotype dimensions dictate behaviors: Figure 11 demon-
strates that a moderately different choice in phenotypes can
have a large impact on the system behavior. Here, we sub-
stituted the final angle, φ, (averaged over 2 [s], with range
±10◦) for the x-position phenotype. The behavior is very
qualitatively different. Despite using NGCS, only three of the
produced solutions in this run actually land; all of the others
climb without bound. This change in behaviors is a result
of only a change in the phenotype used within MAP-Elites,
demonstrating the importance of phenotype selection.

7. CONCLUSIONS
In this work we examined MAP-Elites for use as a search al-

gorithm to generate successful controllers for autonomous UAVs,
even with wind disturbances. We discovered that the most useful
phenotypes were highly coupled, limiting the population that could
be supported. We partially addressed this by introducing a second
controller which is substituted when the UAV is less than 5 [m]
above ground level and still traveling downward. This produced a
wider variety of phenotypic behaviors, and a median population
twice as large. Our final controllers resulted in vertical landing
speeds lower than dropping the aircraft from 50 [cm] above the

10

ground. The softest landings had a glide angle of less than 1◦and
vertical speed of less than 1 [m/s].

These studies were limited by simulation-based factors: first, our
simulation does not account for near-ground changes in aerody-
namics and wind. Second, our simulation does not account for aero-
dynamic forces on the body, or any part of the aircraft when out-
side of the range which we could calculate coefficients of lift and
drag using XFOIL. Finally, our simulation does not account for any
changes in air pressure with altitude.

Future work on this topic includes implementing such a con-
troller in a six DOF simulator, working toward physical implemen-
tation. We suspect that the solution quality we produced can be im-
proved upon by casting the problem within the framework of mul-
tiple objectives and incorporating a framework that will allow opti-
mziation over those multiple objectives simultaneously [30, 31].
Additionally, we are researching MAP-Elites for more complex
control problems, like vertical takeoff and landing of fixed-wing
UAVs; small UAVs typically have a large enough thrust-to-weight
ratio to be physically able to perform this maneuver, but it requires
a skilled pilot to perform.

REFERENCES
[1] On landings part II. Technical Report FAA-P-8740-12 AFS-8

(2008) HQ 101128, Federal Aviation Administration, 2008.
[2] Registration and marking requirements for small unmanned

aircraft. Technical Report 80 FR 78593, Federal Aviation
Administration, 2015.

[3] K. Alexis, G. Nikolakopoulos, and A. Tzes. Switching model
predictive attitude control for a quadrotor helicopter subject
to atmospheric disturbances. Control Engineering Practice,
19(10):1195–1207, 2011.

[4] John D. Anderson. Fundamentals of Aerodynamics.
McGraw-Hill Education, 5th edition, 2010.

[5] C.J. Bauer. Ground state-fly state transition control for
unique-trim aircraft flight control system, August 29 1995.
US Patent 5,446,666.

[6] W. Baxt. Use of an artificial neural network for the diagnosis
of myocardial infarction. Annals of internal medicine,
115(11):843–848, 1991.

[7] A. Cully, J. Clune, D. Tarapore, and J. Mouret. Robots that
can adapt like animals. Nature, 521(7553):503–507, 2015.

[8] Mark Drela. XFOIL Subsonic Airfoil Development System.
December 2013.

[9] P. Ecarlat, A. Cully, C. Maestre, and S. Doncieux. Learning a
high diversity of object manipulations though an
evolutionary-based babbling. 2015.

[10] JD Foster and F. Neuman. Investigation of a digital automatic
aircraft landing system in turbulences. 1970.

[11] Li G and Baker SP. Crash risk in general aviation. JAMA,
297(14):1596–1598, 2007.

[12] A. Gautam, PB Sujit, and S. Saripalli. A survey of
autonomous landing techniques for UAVs. In Unmanned
Aircraft Systems (ICUAS), 2014 International Conference
on, pages 1210–1218. IEEE, 2014.

[13] W. E Green and P. Y Oh. Autonomous hovering of a
fixed-wing micro air vehicle. In Robotics and Automation,
2006. ICRA 2006. Proceedings 2006 IEEE International
Conference on, pages 2164–2169. IEEE, 2006.

[14] K. Hornik, M. Stinchcombe, and H. White. Multilayer
feedforward networks are universal approximators. Neural
networks, 2(5):359–366, 1989.

[15] C. C Jorgensen and C. Schley. A neural network baseline
problem for control of aircraft flare and touchdown. Neural
networks for control, page 403, 1995.

[16] HJ Kim, M. I Jordan, S. Sastry, and A. Y Ng. Autonomous
helicopter flight via reinforcement learning. In Advances in
neural information processing systems, page None, 2003.

[17] J. Lehman and K. O Stanley. Abandoning objectives:
Evolution through the search for novelty alone. Evolutionary
computation, 19(2):189–223, 2011.

[18] FW Lewis, S. Jagannathan, and A. Yesildirak. Neural
network control of robot manipulators and non-linear
systems. CRC Press, 1998.

[19] W. Li and D. Harris. Pilot error and its relationship with
higher organizational levels: HFACS analysis of 523
accidents. Aviation, Space, and Environmental Medicine,
77(10):1056–1061, 2006.

[20] A. Mellit and A. M Pavan. A 24-h forecast of solar irradiance
using artificial neural network: Application for performance
prediction of a grid-connected PV plant at Trieste, Italy.
Solar Energy, 84(5):807–821, 2010.

[21] J. Mouret and J. Clune. Illuminating search spaces by
mapping elites. arXiv preprint arXiv:1504.04909, 2015.

[22] A. M Nguyen, J. Yosinski, and J. Clune. Innovation engines:
Automated creativity and improved stochastic optimization
via deep learning. In Proceedings of the 2015 on Genetic and
Evolutionary Computation Conference, pages 959–966.
ACM, 2015.

[23] M. Oncu and S. Yildiz. An analysis of human causal factors
in Unmanned Aerial Vehicle (UAV) accidents. PhD thesis,
Monterey, California: Naval Postgraduate School, 2014.

[24] A. S Saeed, A. Bani Younes, S. Islam, J. Dias,
L. Seneviratne, and G. Cai. A review on the platform design,
dynamic modeling and control of hybrid UAVs. In
Unmanned Aircraft Systems (ICUAS), 2015 International
Conference on, pages 806–815. IEEE, 2015.

[25] S. Shappell, C. Detwiler, K. Holcomb, C. Hackworth,
A. Boquet, and D. A Wiegmann. Human error and
commercial aviation accidents: An analysis using the human
factors analysis and classification system. Human Factors,
49(2):227 – 242, 2007.

[26] J. Shepherd III and K. Tumer. Robust neuro-control for a
micro quadrotor. In Proceedings of the 12th annual
conference on Genetic and evolutionary computation, pages
1131–1138. ACM, 2010.

[27] D. M Watson, G. H Hardy, and D. N Warner Jr. Flight-test of
the glide-slope track and flare-control laws for an automatic
landing system for a powered-lift STOL airplane. 1983.

[28] L. Yliniemi, A. Agogino, and K. Tumer. Simulation of the
introduction of new technologies in air traffic management.
Connection Science, 2014.

[29] L. Yliniemi, A. K. Agogino, and K. Tumer. Multirobot
coordination for space exploration. AI Magazine,
4(35):61–74, 2014.

[30] L. Yliniemi and K. Tumer. PaCcET: An objective space
transformation to iteratively convexify the pareto front. In
10th International Conference on Simulated Evolution And
Learning (SEAL), 2014.

[31] L. Yliniemi and K. Tumer. Complete coverage in the
multi-objective PaCcET framework. In S. Silva, editor,
Genetic and Evolutionary Computation Conference, 2015.

11

Dynamic Economic Emissions Dispatch Optimisation
using Multi-Agent Reinforcement Learning∗

Patrick Mannion
Discipline of Information

Technology
National University of Ireland

Galway
p.mannion3@nuigalway.ie

Karl Mason
Discipline of Information

Technology
National University of Ireland

Galway
k.mason2@nuigalway.ie

Sam Devlin
Department of Computer

Science
University of York

UK
sam.devlin@york.ac.uk

Jim Duggan
Discipline of Information

Technology
National University of Ireland

Galway
jim.duggan@nuigalway.ie

Enda Howley
Discipline of Information

Technology
National University of Ireland

Galway
ehowley@nuigalway.ie

ABSTRACT
Multi-Agent Reinforcement Learning (MARL) is a power-
ful Machine Learning paradigm, where multiple autonomous
agents can learn to improve the performance of a system
through experience. In this paper, we examine the appli-
cation of MARL to a Dynamic Economic Emissions Dis-
patch (DEED) problem. This is a multi-objective problem
domain, where the conflicting objectives of fuel cost and
emissions must be minimised. Here we use the framework
of Stochastic Games to reformulate this problem as a se-
quential decision making process, thus making it suitable
for the application of MARL. We evaluate the performance
of several different MARL credit assignment structures in
this domain, including local rewards, global rewards, dif-
ference rewards and Counterfactual as Potential, along with
two different objective scalarisation methods. We also intro-
duce a new variant of the DEED problem, where a random
generator fails during the simulation, with the goal of testing
the robustness of the various MARL approaches. Difference
rewards are found to offer the best performance of all the
MARL credit assignment structures tested, learning Pareto
optimal solutions that dominate those of the other MARL
approaches. Our experimental results also show that MARL
can produce comparable solutions to those published previ-
ously using the traditional DEED problem format, including
those computed by Genetic Algorithms and Particle Swarm
Optimisation.

1. INTRODUCTION
In a Multi-Agent System (MAS), multiple autonomous

agents act independently in the same environment. Agents
in a cooperative MAS are designed to work together to
achieve a system-level goal [20]. Numerous complex, real
world systems have been successfully optimised using the
MAS framework, including air traffic control [15], traffic sig-
nal control [7] and data routing in networks [19].

∗This paper extends our AAMAS 2016 short paper [8] with
full implementation details for the DEED problem domain,
and additional analysis of the experimental results.

The majority of MAS research focuses on optimising sys-
tems with respect to a single objective, despite the fact that
many real world problems are inherently multi-objective in
nature. Single objective approaches seek to find a single
solution to a problem, whereas in reality a system may
have multiple conflicting objectives that could be optimised.
This is the issue addressed by multi-objective optimisation
(MOO) approaches: the requirement to make a trade-off
between competing objectives. MOO approaches typically
seek to approximate the true Pareto front of a problem, i.e.
the set of solutions which are all considered equally opti-
mal. The Pareto optimal or non-dominated set consists of
solutions that are incomparable, where each solution is not
dominated by any of the others on every objective.

Reinforcement Learning (RL) has proven to be success-
ful in developing suitable joint policies for cooperative MAS
in all of the problem domains mentioned above. RL agents
learn by maximising a scalar reward signal from the envi-
ronment, and thus the design of the reward function directly
affects the policies learned. The issue of credit assignment
in Multi-Agent Reinforcement Learning (MARL) is an area
of active research with numerous open questions, especially
so when considering multi-objective problem domains.

In this paper we analyse a Dynamic Economic Emissions
Dispatch (DEED) problem using the MAS paradigm. DEED
is an established problem domain, that has previously been
studied using approaches such as Genetic Algorithms (GA)
[1] and Particle Swarm Optimisation (PSO) [9]. The prob-
lem consists of a series of electricity generators, which must
be scheduled appropriately in order to meet a customer de-
mand profile. Generator scheduling is a complex task due
to many different factors, including: unpredictable fluctua-
tions in demand; power loss within the transmission lines;
and varying efficiency levels, power limits and ramp limits
among generators in the same plant [1].

High and often unpredictable fuel prices mean that effi-
cient generator scheduling is necessary to produce electricity
in a cost effective manner. However, it is also desirable to
minimise the environmental impact of electricity production
due to the emission of harmful atmospheric pollutants such
as sulphur dioxide (SO2) and nitrogen oxide (NO). Thus,

12

we approach the problem from a multi-objective perspective,
with the goal of minimising both fuel cost and emissions.
Minimising both cost and emissions from power stations is
a difficult problem, because these goals are in opposition to
each other as the optimal solution for each objective is ap-
proached. This problem domain will serve as a testbed for
evaluating the effectiveness of different MARL credit assign-
ment structures while agents learn to optimise these conflict-
ing objectives.

The contributions of this paper are as follows: 1) We pro-
pose the DEED problem domain as a new testbed for multi-
objective MAS research, reformulating the traditional prob-
lem as a Stochastic Game; 2) We propose a new variant of
the DEED domain with random generator failure, with the
goal of testing the robustness and adaptability of agents to
system disturbances; 3) We evaluate the suitability of joint
policies learned under four different MARL credit assign-
ment structures for this problem; 4) We prove empirically
that MARL can develop solutions to the DEED problem
that are of comparable quality to those published previously
(e.g. Genetic Algorithms, Particle Swarm Optimisation).

In the next section of this paper, we discuss the necessary
terminology and relevant literature. We then describe the
traditional format of the DEED problem domain, along with
the Stochastic Game version which we have developed. Sec-
tion 4 describes our experimental setup. The following sec-
tion presents our experimental results, and we then conclude
our paper with a discussion of possible future extensions to
this work.

2. RELATED WORK

2.1 Reinforcement Learning
Reinforcement Learning is a powerful Machine Learning

paradigm, in which autonomous agents have the capability
to learn through experience. An RL agent learns in an un-
known environment, usually without any prior knowledge of
how to behave. The agent receives a scalar reward signal r
based on the outcomes of previously selected actions, which
can be either negative or positive. Markov Decision Pro-
cesses (MDPs) are considered the de facto standard when
formalising problems involving a single agent learning se-
quential decision making [18]. A MDP consists of a reward
function R, set of states S, set of actions A, and a transi-
tion function T [11], i.e. a tuple < S,A, T,R >. When in
any state s ∈ S, selecting an action a ∈ A will result in the
environment entering a new state s′ ∈ S with probability
T (s, a, s′) ∈ (0, 1), and give a reward r = R(s, a, s′).

An agent’s behaviour in its environment is determined by
its policy π. A policy is a mapping from states to actions
that determines which action is chosen by the agent for a
given state. The goal of any MDP is to find the best policy
(one which gives the highest expected sum of discounted re-
wards) [18]. Designing an appropriate reward function for
the environment is important, as an RL agent will attempt
to maximise the return from this function, which will deter-
mine the policy learned.

RL can be classified into two paradigms: model-based
(e.g. Dyna, Rmax) and model-free (e.g. Q-Learning, SARSA).
In the case of model-based approaches, agents attempt to
learn the transition function T , which can then be used when
making action selections. By contrast, in the model-free ap-
proach knowledge of T is not a requirement. Model-free

learners instead sample the underlying MDP directly in or-
der to gain knowledge about the unknown model, in the form
of value function estimates (Q values). These estimates rep-
resent the expected reward for each state action pair, which
aid the agent in deciding which action is most desirable to
select when in a certain state. The agent must strike a bal-
ance between exploiting known good actions and exploring
the consequences of new actions in order to maximise the
reward received during its lifetime. Two algorithms that
are commonly used to manage the exploration exploitation
trade-off are ε-greedy and softmax (Boltzmann) [18].

Q-Learning [17] is one of the most commonly used RL
algorithms. It is a model-free learning algorithm that has
been shown to converge to the optimum action-values with
probability 1, so long as all actions in all states are sam-
pled infinitely often and the action-values are represented
discretely [17]. In Q-Learning, the Q values are updated
according to the equation below:

Q(s, a)← Q(s, a) + α[r + γmax
a′

Q(s′, a′)−Q(s, a)] (1)

where α ∈ [0, 1] is the learning rate and γ ∈ [0, 1] is the
discount factor.

2.2 Multi-Agent Reinforcement Learning
The single-agent MDP framework becomes inadequate when

we consider multiple autonomous learners acting in the same
environment. Instead, the more general Stochastic Game
(SG) may be used in the case of a MAS [2]. A SG is defined
as a tuple < S,A1...n, T,R1...n >, where n is the number
of agents, S is the set of states, Ai is the set of actions for
agent i (and A is the joint action set), T is the transition
function, and Ri is the reward function for agent i.

The SG looks very similar to the MDP framework, apart
from the addition of multiple agents. In fact, for the case
of n = 1 a SG then becomes a MDP. The next environment
state and the rewards received by each agent depend on the
joint action of all of the agents in the SG. Note also that each
agent may receive a different reward for a state transition,
as each agent has its own separate reward function. In a SG,
the agents may all have the same goal (collaborative SG),
totally opposing goals (competitive SG), or there may be
elements of collaboration and competition between agents
(mixed SG).

One of two different approaches is typically used when RL
is applied to MAS: multiple individual learners or joint ac-
tion learners. In the former case multiple agents deployed
into an environment each use a single-agent RL algorithm,
whereas joint action learners use multi-agent specific algo-
rithms which take account of the presence of other agents.
When multiple self-interested agents learn and act together
in the same environment, it is generally not possible for all
agents to receive the maximum possible reward. Therefore,
MAS are typically designed to converge to a Nash Equilib-
rium [13]. While it is possible for multiple individual learners
to converge to a point of equilibrium, there is no theoretical
guarantee that the joint policy will be Pareto optimal.

2.3 Reward Shaping
RL agents typically learn how to act in their environment

guided by the reward signal alone. Reward shaping provides
a mechanism to guide an agent’s exploration of its environ-
ment, via the addition of a shaping signal to the reward

13

signal naturally received from the environment. The goal of
this approach is to increase learning speed and/or improve
the final policy learned. Generally, the reward function is
modified as follows:

R′ = R+ F (2)

whereR is the original reward function, F is the additional
shaping reward, and R′ is the modified reward signal given
to the agent.

Empirical evidence has shown that reward shaping can be
a powerful tool to improve the learning speed of RL agents
[12]; however, it can have unintended consequences. A clas-
sic example of reward shaping gone wrong is reported by
Randløv and Alstrøm [12]. The authors designed an RL
agent capable of learning to cycle a bicycle towards a goal,
and used reward shaping to speed up the learning process.
However, they encountered the issue of positive reward cy-
cles due to a poorly designed shaping function. The agent
discovered that it could accumulate a greater reward by cy-
cling in circles continuously to collect the shaping reward
encouraging it to stay balanced, than it could by reach-
ing the goal state. As we discussed earlier, an RL agent
will attempt to maximise its long-term reward, so the pol-
icy learned depends directly on the reward function. Thus,
shaping rewards in an arbitrary fashion can modify the op-
timal policy and cause unintended behaviour.

Ng et al. [10] proposed Potential-Based Reward Shaping
(PBRS) to deal with these shortcomings. When implement-
ing PBRS, each possible system state has a certain potential,
which allows the system designer to express a preference for
an agent to reach certain system states. For example, states
closer to the goal state of a problem domain could be as-
signed higher potentials than those that are further away.
Ng et al. defined the additional shaping reward F for an
agent receiving PBRS as shown in Eqn. 3 below:

F (s, s′) = γΦ(s′)− Φ(s) (3)

where Φ(s) is the potential function which returns the
potential for a state s, and γ is the same discount factor used
when updating value function estimates. PBRS has been
proven not to alter the optimal policy of a single agent acting
in infinite-state and finite-state MDPs [10], and thus does
not suffer from the problems of arbitrary reward shaping
approaches outlined above. In single agent RL, even with a
poorly designed potential function, the worst case is that an
agent may learn more slowly than without shaping but the
final policy is unaffected.

In MARL, work by Devlin and Kudenko [4] proved that
PBRS does not alter the set of Nash equilibria of a SG.
Furthermore, Devlin and Kudenko [5] also proved that the
potential function can be changed dynamically during learn-
ing, while still preserving the guarantees of policy invariance.
PBRS does not alter the set of Nash equilibria of a MAS, but
it can affect the joint policy learned. It has been empirically
demonstrated that agents guided by a well-designed poten-
tial functions can learn at an increased rate and converge
to better joint policies, when compared to agents learning
without PBRS [3]. However, with an unsuitable potential
function, agents learning with PBRS can converge to worse
joint policies than those learning without PBRS.

2.4 Multi-Agent Credit Assignment Structures
Here we introduce the MARL credit assignment structures

that we will evaluate on the DEED domain. Previous work
by Yliniemi and Tumer [21] identified the importance of
appropriate credit assignment structures for multi-objective
MARL problem domains. In particular, their experimental
results showed that difference rewards are a very promising
approach for learning good joint policies in multi-objective
MARL problems. In addition to difference rewards, we also
evaluate the performance of three other credit assignment
structures in the DEED domain.

A local reward (Li) is based on the utility of the part of
a system that agent i can observe directly. Individual agents
are self-interested, and each will selfishly seek to maximise
its own local reward signal, often at the expense of global
system performance when locally beneficial actions are in
conflict with the optimal joint policy.

A global reward (G) provides a signal to the agents
which is based on the utility of the entire system. Rewards of
this form encourage all agents to act in the system’s interest,
with the caveat that an individual agent’s contribution to
the system performance is not clearly defined. All agents
receive the same reward signal, regardless of whether their
actions actually improved the system performance.

A difference reward (Di) is a shaped reward signal that
aims to quantify each agent’s individual contribution to the
system performance [19]. The unshaped reward is equal to
G(z), and the shaping term is −G(z−i). Formally:

Di(z) = G(z)−G(z−i) (4)

where Di is the reward received by agent i, G(z) is the
global system utility, and G(z−i) is the global utility for
a theoretical system without the contribution of agent i.
Here z is a general term that may represent either states
or state-action pairs, depending on the specific application.
Difference rewards are a well-established shaping methodol-
ogy, with many successful applications in MARL (e.g. [15,
19, 21]). However, they do not provide the same theoretical
guarantees as potential-based shaping approaches, and thus
their use may modify the set of Nash equilibria of a SG.

Counterfactual as Potential (CaP), proposed by De-
vlin et al. [6], is an automated method of generating multi-
agent potential functions using the same knowledge repre-
sented by difference rewards. CaP automatically assigns
potentials to states using the counterfactual term G(z−i),
so that Φ(s) = G(z−i). In this framework, the unshaped re-
wardR(s, a, s′) = G(s, a, s′), and the shaping reward F (s, s′)
is calculated as normal in PBRS according to Eqn. 3. As
Φ(s) for agent i is in fact based on the state of the other
agents in the system, the potential function is dynamic, and
CaP is thus an instance of Dynamic PBRS [5]. CaP there-
fore preserves the guarantee of consistent Nash equilibria,
while incorporating knowledge based on difference rewards
in an automated manner. According to the proof of necessity
for PBRS [10], there must exist a problem domain for which
difference rewards alter the Nash equilibria of the system
[6]. For applications that specifically require the guarantees
of PBRS, CaP is a viable alternative to D, as it benefits
from the theoretical properties of PBRS whilst leveraging
the same information that is represented by D.

14

3. DYNAMIC ECONOMIC EMISSIONS
DISPATCH (DEED)

As we discussed previously, in the DEED problem a num-
ber of electricity generators must be scheduled to meet a
specified demand over a period of time, while minimising
both fuel cost and emissions. The version of the problem
which we analyse here was originally proposed by Basu [1].
Basu’s version is presented as a multi-dimensional optimi-
sation problem, with each dimension in the problem space
representing the power output of a generator at a given time.

The cost function f1 which computes the total fuel cost
for the generators, including the effect of valve point loading
[16], is defined as:

f1 =

M∑

m=1

N∑

n=1

[an+bnPnm+cn(Pnm)2+|dnsin{en(Pminn −Pnm)}|]

(5)

where M = 24 is the number of hours, N = 10 is the number
of power generators, an, bn, cn, dn and en are the cost coef-
ficients associated with each generator n, Pnm is the power
output from generator n at time m, and Pminn is the mini-
mum permissible power output of generator n.

The total combined emissions of SO2 and NO from the
group of generators is calculated using function f2 [1]:

f2 =

M∑

m=1

N∑

n=1

[αn + βnPnm + γn(Pnm)2 + η exp δPnm] (6)

Here αn, βn, γn, ηn and δn are the emission coefficients
associated with each generator n.

The total power output in a given hour must be equal to
the sum of the power demand and transmission losses:

N∑

n=1

Pnm = PDm + PLm ∀m ∈M (7)

where PDm is the power demand over hour m and PLm is
the transmission loss over hour m.

There are two inequality constraints which any potential
solutions are subject to: the operating limits and the ramp
limits for each power generator in the station. The operating
limits specify the minimum and maximum possible power
output of a generator, while the ramp limits determine the
maximum allowed increase or decrease in the power output
of a generator from one hour to the next.

Pminn ≤ Pnm ≤ Pmaxn (8)

Pnm − Pn(m−1) ≤ URn (9a)

Pn(m−1) − Pnm ≤ DRn (9b)

where Pminn and Pmaxn refer to the minimum and max-
imum power output of each generator, Pnm is the power
output for n ∈ N and m ∈ M , and URn and DRn are the
ramp up and ramp down limits for generator n.

In order to satisfy the equality constraint described by
Eqn. 7, the first generator n = 1 is a slack generator. The

power outputs of the other 9 generators are set directly, and
the slack generator makes up any shortfall in the combined
power output. The settings for the slack generator are there-
fore dependant variables during the optimisation process,
while the outputs of the other N − 1 generators are inde-
pendent variables. The power output of the slack generator
for a single hour, P1m, may be calculated by rearranging
Eqn. 7:

P1m = PDm + PLm −
N∑

n=2

Pnm (10)

The loss in the transmission lines between generators,
PLm, over hour m is calculated as follows:

PLm =

N∑

n=2

N∑

j=2

PnmBnjPjm+2P1m(

N∑

n=2

B1nPnm)+B11(P1m)2

(11)
Where B is the matrix of transmission line loss coefficients

[1]. Combining Eqn. 10 with Eqn. 11 produces the following
quadratic equation:

0 = B11(P1m)2 + (2

N∑

n=2

B1nPnm − 1)P1m+

(PDm +

N∑

n=2

N∑

j=2

PnmBnjPnm −
N∑

n=2

Pnm)

(12)

Solving this quadratic equation using basic algebra will
give the reactive power of the slack generator, P1m, at each
hour. All required values for the cost coefficients, emission
coefficients, ramp limits, generator capacity limits, power
demands and transmission line loss coefficients can be found
in the work of Basu [1].

4. DEED AS A MULTI-OBJECTIVE
STOCHASTIC GAME

In order to create a version of the Dynamic Economic
Emissions Dispatch problem suitable for the application of
MARL, we reformulate it as a multi-objective Stochastic
Game. We divide the problem into one of sequential decision
making, where each hour m ∈ M is a separate timestep in
the SG. Each of the 9 directly controlled generators n =
{2, ..., 10} are assigned to an agent i = {2, ..., 10}, where
agent i sets the power output Pnm of its generator n = i at
every timestep m.

It is now necessary to derive new cost and emissions func-
tions, which will measure the system utility at each timestep.
From Eqn. 5, we develop a function fLc which computes the
local cost for generator n over hour m:

fLc (n,m) = an+bnPnm+cn(Pnm)2+|dnsin{en(Pminn −Pnm)}|
(13)

Thus the global cost function fGc for all generators over hour
m is:

fGc (m) =

N∑

n=1

fLc (n,m) (14)

Similarly, from Eqn. 6 we develop an emissions function fLe
for generator n over hour m:

fLe (n,m) = E(αn+βnPnm+γn(Pnm)2 +η exp δPnm) (15)

15

where E = 10 is the emissions scaling factor, chosen so that
the magnitude of the local emissions function fLe matches
that of the local cost function fLc . It follows that the global
emissions function fGe for all generators over hour m is:

fGe (m) =

N∑

n=1

fLe (n,m) (16)

The next environmental state for each agent i is defined as
a vector containing the change in power demand ∆PD since
the previous timestep, and the previous power output of the
generator n, Pnm. The change in power demand at time m
is calculated as:

∆PDm = PDm − PD(m−1) (17)

Therefore the state vector for agent i (controlling genera-
tor n) at time m is:

sim = [∆PDm, Pn(m−1)] (18)

The action chosen by agent i at each timestep determines
the power output of the generator n under its control. How-
ever, the power output constraints in Eqn. 8 must be satis-
fied for each generator. Therefore the possible action set for
agent i consists of:

Ai = {Pminn , ..., Pmaxn } (19)

At any hour m, when the ramp limits in Eqns. 9a and 9b
are imposed, an agent’s action set is constrained to:

Aim = {Pn(m−1)−URn ≥ Pminn , ..., Pn(m−1)−URn ≤ Pmaxn }
(20)

We must also consider how to handle the power limits
and ramp limits of the slack generator, n = 1. We develop
a global penalty function fGp based on the static penalty
method [14] to capture violations of these constraints:

fGp (m) =

V∑

v=1

C(|hv + 1|δv) (21)

h1 =





P1m − Pmax1 if P1m > Pmax1

Pmin1 − P1m if P1m < Pmin1

0 otherwise

(22)

h2 =





(P1m − P1(m−1))− UR1 if (P1m − P1(m−1)) > UR1

(P1m − P1(m−1)) +DR1 if (P1m − P1(m−1)) < −DR1

0 otherwise

(23)
where V = 2 is the number of constraints handled using

this method (one possible violation each for slack generator
power and ramp limits over hour m), C = 10E6 is the vi-
olation constant, hv is the violation of each constraint, and
δv = 0 if there is no violation in a given constraint and
δv = 1 if the constraint is violated. The violation constant
C = 10E4 was selected so that the output of the penalty
function will have a similar magnitude to that of the cost
function fGc . The penalty function is an additional objective
that must be optimised, in addition to cost and emissions.

5. APPLICATION OF MULTI-AGENT
REINFORCEMENT LEARNING

5.1 Calculating Counterfactuals
We apply multiple individual Q-Learning agents to the

DEED SG defined above, learning with credit assignment
structures L, G, D, and CaP . We have already defined
suitable equations for representing the local and global ob-
jectives in the section above, so we now address the question
of how to calculate counterfactual terms to be used with D
and CaP . The counterfactual cost, emissions and viola-
tions terms for an agent i are calculated by assuming that
the agent did not choose a new power output value in the
timestep m (i.e. the power output of generator n = i did
not change):

fG(z−i)
c (m) =

N∑

n=1
n 6=i

fLc (n,m) + fLc (i,m− 1) (24)

fG(z−i)
e (m) =

N∑

n=1
n 6=i

fLe (n,m) + fLe (i,m− 1) (25)

The output of the counterfactual version f
G(z−i)
p of the

penalty function fGp is calculated as per Eqn. 21, with the

term P
(z−i)
1m substituted for P1m in Eqns. 22 and 23. P

(z−i)
1m

is calculated as:

P
(z−i)
1m = PDm + PLm −

N∑

n=2
n 6=i

Pnm − Pi(m−1) (26)

5.2 Scalarisation of Objectives
We combine the reward signals Lo, Go, Do and CaPo for

each objective o ∈ O into single reward signals, using two
different scalarisation techniques: linear scalarisation (+)
and hypervolume scalarisation (λ). The agents receive one
of these scalarised reward signals while learning: L(+), L(λ),
G(+), G(λ), D(+), D(λ), CaP (+) or CaP (λ).

R+ = −
O∑

o=1

wofo (27)

Rλ = −
O∏

o=1

fo (28)

where wo is the objective weight, fo is the objective func-
tion (global or local version as appropriate), and the generic
R is replaced by L, G, D, or CaP as appropriate, depend-
ing on the credit assignment structure used. The objective
weights used are: wc = 0.45, we = 0.55, and wp = 1.0.
These values were chosen following parameter sweeps, so
as to maintain a good balance between the objectives while
learning. Note that in the case of a local reward L, O = 2 as
there is no local penalty function. O = 3 for all other credit
assignment schemes, as they all make use of the global ver-
sions of the objective functions. Note also that the rewards
assigned are negative, as all objectives must be minimised.

16

Figure 1: 24 Hour Power Demand

5.3 Action Selection
In initial experimental work on the DEED SG domain

using the full action definitions in Eqns. 19 and 20, we
found that the quality of the policies learned was highly
variable, often resulting in poor performance. We attribute
this to the fact that the action space Ai for each agent is
of a different size. For example, using a discretisation level
of 1MW, the smallest action space has 46 actions, and the
largest has 321 actions when using the generator operating
limits from Basu’s work [1]. These discrepancies meant the
time required for each agent to sample the full state action
space varied widely. To overcome this difficulty, we create
an abstraction A∗ of the action space, where each agent
has a set of 101 possible actions A∗ = {0, 1, ..., 99, 100}.
Each action represents a different percentage value of the
operating range of the generator, so generators with wider
operating ranges have larger increments. The power output
from generator n for action a∗i is calculated as:

Pn = Pminn + a∗i

(
Pmaxn − Pminn

100

)
i = n (29)

The power output selected by an agent is still subject to
the ramp limits, as per Eqns. 9a, 9b and 20, so a∗ selec-
tions that would violate these limits are not allowed. This
action space abstraction is used in all experimental work
presented in this paper. Agents select actions from A∗ us-
ing the ε-greedy strategy, where a random action is selected
with probability ε, and the highest valued action is selected
with probability 1− ε.

5.4 Experimental Procedure
We test two variations of the DEED domain. In the nor-

mal version of the problem, the agents learn for 20, 000
episodes, each of which comprises 24 hours. The second
version also lasts for 20,000 episodes; after 10,000 episodes a
random generator n ∈ {2, ..., 10} fails, and the agents must
learn to compensate for the loss of this generator, while still
meeting the same electricity demand. The aim of this sec-
ond experiment is to test the robustness to disturbances and
adaptability of agents learning by each MARL credit assign-
ment structure. The demand profile used in both experi-
ments is shown in Fig. 1. This is the same demand profile
that was used in used in work by Basu [1] and Mason [9], so
our DEED SG results will be directly comparable to results

reported by these authors. The learning parameters for all
agents are set as follows: α = 0.10, γ = 0.75, ε = 0.05.
These values were selected following parameter sweeps to
determine the best performing settings.

6. RESULTS
We will first discuss the results of the standard version

of the problem. All plots include error bars representative
of the standard error of the mean based on 50 statistical
runs. Specifically, we calculate the error as σ/

√
n where σ

is the standard deviation and n is the number of statistical
runs. The plots show a 200 episode moving average across
the 50 statistical runs that were conducted. All claims of
statistical significance are supported by two-tailed t-tests
assuming unequal variances, with p = 0.05 selected as the
threshold for significance.

In each table, the power is presented in MW, the cost is
presented in $ ×106 and the emissions are presented in lb
×105. All values in each table are rounded to 4 decimal
places. Table 1 displays the average cost and emissions for
the MARL approaches tested, along with NSGA-II results
reported by Basu [1] and PSO-AWL results reported by Ma-
son [9] for comparison purposes.

The plots of learning curves for the cost objective in the
first experiment (Figs. 2 and 3) gives an indication of learn-
ing speeds and stability of solutions for each of the ap-
proaches tested. As expected, L performs poorly here, as
the local reward encourages agents to greedily minimise their
own fuel cost, without considering the utility of the system
as a whole. D converges to a stable policy most quickly with
both scalarisations, while both variants of G learn good poli-
cies, but at a slower rate than D. CaP initially learns more
quickly than G for both scalarisations; increased learning
speed is a typical characteristic of PBRS. However, the fi-
nal joint policies learned by CaP are not as good as those
learned by G or D. Similar learning behaviour is exhib-
ited for the emissions and penalty objectives for all reward
structures tested.

No statistical difference was found between the final per-
formance of the scalarisation approaches for G(+) and G(λ),
or for CaP (+) and CaP (λ). The differences in the means
between D(+) and D(λ) were statistically insignificant for
the cost objective, but were significant for the emissions ob-
jective (p = 1.19× 10−8). The differences in the mean final
performance of D(+) and G(+) were found to be signifi-
cant for both the cost objective (p = 5.01× 10−22), and the
emissions objective (p = 3.20× 10−10).

Figures 4 and 5 show the learning curves for the cost ob-
jective in the second experiment, where a random generator
fails. Both variants of L again perform poorly in this exper-
iment. Similar to the first experiment, CaP initially learns
more quickly than G, but converges to a poorer policy. D is
again the best performing reward structure here, and both
variants converge to a stable policy after generator failure
much more quickly than any other reward structure tested.
The agents learning using D are exceptionally robust to dis-
turbances in this problem domain when compared to agents
learning using the other credit assignment structures.Figure
6 plots the Pareto fronts for G, D and CaP . These fronts are
comprised of the non-dominated policies learned by each ap-
proach over 50 runs conducted in the first experiment. The
best policies were learned by D, and they all dominate the
best policies learned by either G or CaP .

17

Figure 2: Learning curves for the cost objective

Figure 3: Learning curves for the cost objective

Finally, analysing the average results presented in Table
1, we can see that MARL produces results that are compa-
rable to those produced by GA and PSO based approaches,
although not quite as good. For example, Basu’s NSGA-II
has 4.2% lower costs, and 6.8% lower emissions than D(+)
on average in this problem. However, MAS is arguably a
more interesting paradigm to use when studying these types
of optimisation problems, due to the ability to modify simu-
lation parameters while learning online, and the possibility
of modelling system disturbances (e.g. generator failure).
MAS are inherently suited to distributed control and opti-
misation problems like DEED, and we intend to investigate
further applications of MAS and MARL to these types of
problems in the future.

7. CONCLUSION
In this paper, we have analysed a multi-objective, real

world problem domain using the MAS paradigm. The DEED
domain was reformulated as a sequential decision making
problem using the framework of Stochastic Games, in or-
der to allow the application of Multi-Agent Reinforcement
Learning. We evaluated the effect of using several different
multi-agent credit assignment structures on the joint poli-
cies learned in this problem, while also testing two different
techniques for scalarisation of objectives. We found that
difference rewards provided the best overall performance in
this problem domain, and that a linear objective scalarisa-

Figure 4: Effect of random generator failure

Figure 5: Effect of random generator failure

tion (+) was generally more effective than a hypervolume
scalarisation(λ). The best MARL experiment produced re-
sults that are comparable to other previously published at-
tempts at solving this problem domain, including NSGA-II
[1] and PSO [9]. Difference rewards were also found to be
more robust to disturbances than the other MARL credit as-
signment structures, and they effectively encouraged agents
to adapt in the generator failure scenario, and to quickly
learn new stable policies.

Numerous possibilities for further research are raised by
this paper. While we tested four different multi-agent credit
assignment structures, numerous others exist, some of which
may provide better solutions to the problem than those re-
ported here. Specifically, we are now examining the use
of Difference Rewards incorporating Potential Based Re-
ward Shaping (DRiP) [6] as a possible way of improving
MARL performance in this problem domain. It would also
be worthwhile to investigate the use of value function ap-
proximation in this domain, as the ability to generalise across
states and/or actions would be useful when developing agents
that could react quickly to previously unseen changes in
power demand, e.g. as would occur in a real world system.

Acknowledgments
Patrick Mannion is funded by the Irish Research Council
through the Government of Ireland Postgraduate Scholar-
ship Scheme.

18

Table 1: DEED Average solutions

Cost ($ ×106) Emissions (lb ×105)

L(+) 4.1127 28.8266
L(λ) 4.1149 17.6606
CaP (+) 2.8777 7.4774
CaP (λ) 2.8919 9.6431
G(+) 2.7647 3.9098
G(λ) 2.7607 3.9788
D(+) 2.6641 3.3255
D(λ) 2.6748 3.8980
NSGA-II [1] 2.5226 3.0994
PSO-AWL [9] 2.5463 2.9455

Figure 6: Pareto fronts showing non-dominated policies
learned using G, D and CaP over 50 runs

REFERENCES
[1] M. Basu. Dynamic economic emission dispatch using

nondominated sorting genetic algorithm-ii.
International Journal of Electrical Power & Energy
Systems, 30(2):140–149, 2008.

[2] L. Buşoniu, R. Babuška, and B. Schutter. Multi-agent
reinforcement learning: An overview. In D. Srinivasan
and L. Jain, editors, Innovations in Multi-Agent
Systems and Applications - 1, volume 310 of Studies in
Computational Intelligence, pages 183–221. Springer
Berlin Heidelberg, 2010.

[3] S. Devlin, M. Grzes, and D. Kudenko. An empirical
study of potential-based reward shaping and advice in
complex, multi-agent systems. Advances in Complex
Systems, 14(2):251–278, 2011.

[4] S. Devlin and D. Kudenko. Theoretical considerations
of potential-based reward shaping for multi-agent
systems. In Proceedings of the 10th International
Conference on Autonomous Agents and Multiagent
Systems (AAMAS), pages 225–232, 2011.

[5] S. Devlin and D. Kudenko. Dynamic potential-based
reward shaping. In Proceedings of the 11th
International Conference on Autonomous Agents and
Multiagent Systems (AAMAS), pages 433–440, 2012.

[6] S. Devlin, L. Yliniemi, D. Kudenko, and K. Tumer.
Potential-based difference rewards for multiagent
reinforcement learning. In Proceedings of the 13th
International Conference on Autonomous Agents and

Multiagent Systems (AAMAS), pages 165–172, 2014.

[7] P. Mannion, J. Duggan, and E. Howley. An
experimental review of reinforcement learning
algorithms for adaptive traffic signal control. In
L. McCluskey, A. Kotsialos, J. P. Mueller, F. Kluegl,
O. Rana, and R. Schumann, editors, Autonomic Road
Transport Support Systems, Autonomic Systems.
Birkhauser/Springer, 2016 (in press).

[8] P. Mannion, K. Mason, S. Devlin, J. Duggan, and
E. Howley. Multi-objective dynamic dispatch
optimisation using multi-agent reinforcement learning.
In Proceedings of the 15th International Conference on
Autonomous Agents and Multiagent Systems
(AAMAS), May 2016 (in press).

[9] K. Mason. Avoidance techniques & neighbourhood
topologies in particle swarm optimisation. Master’s
thesis, National University of Ireland Galway, 2015.

[10] A. Y. Ng, D. Harada, and S. J. Russell. Policy
invariance under reward transformations: Theory and
application to reward shaping. In Proceedings of the
Sixteenth International Conference on Machine
Learning, ICML ’99, pages 278–287, San Francisco,
CA, USA, 1999. Morgan Kaufmann Publishers Inc.

[11] M. L. Puterman. Markov Decision Processes: Discrete
Stochastic Dynamic Programming. John Wiley &
Sons, Inc., New York, NY, USA, 1st edition, 1994.

[12] J. Randløv and P. Alstrøm. Learning to drive a
bicycle using reinforcement learning and shaping. In
Proceedings of the Fifteenth International Conference
on Machine Learning, ICML ’98, pages 463–471, San
Francisco, CA, USA, 1998. Morgan Kaufmann
Publishers Inc.

[13] Y. Shoham, R. Powers, and T. Grenager. If
multi-agent learning is the answer, what is the
question? Artificial Intelligence, 171(7):365–377, 2007.

[14] A. E. Smith, D. W. Coit, T. Baeck, D. Fogel, and
Z. Michalewicz. Penalty functions. Evolutionary
computation, 2:41–48, 2000.

[15] K. Tumer and A. Agogino. Distributed agent-based air
traffic flow management. In Proceedings of the 6th
International Conference on Autonomous Agents and
Multiagent Systems (AAMAS), pages 330–337,
Honolulu, HI, May 2007.

[16] D. C. Walters and G. B. Sheble. Genetic algorithm
solution of economic dispatch with valve point
loading. Power Systems, IEEE Transactions on,
8(3):1325–1332, 1993.

[17] C. J. Watkins and P. Dayan. Technical note:
Q-learning. Machine Learning, 8(3-4):279–292, 1992.

[18] M. Wiering and M. van Otterlo, editors.
Reinforcement Learning: State-of-the-Art. Springer,
2012.

[19] D. H. Wolpert and K. Tumer. Collective intelligence,
data routing and braess’ paradox. Journal of Artificial
Intelligence Research, pages 359–387, 2002.

[20] M. Wooldridge. Introduction to Multiagent Systems.
John Wiley & Sons, Inc., New York, NY, USA, 2001.

[21] L. Yliniemi and K. Tumer. Multi-objective multiagent
credit assignment through difference rewards in
reinforcement learning. In Simulated Evolution and
Learning, pages 407–418. Springer International
Publishing, 2014.

19

Avoiding the Tragedy of the Commons
using Reward Shaping

Patrick Mannion
Discipline of Information

Technology
National University of Ireland

Galway
p.mannion3@nuigalway.ie

Sam Devlin
Department of Computer

Science
University of York

UK
sam.devlin@york.ac.uk

Jim Duggan
Discipline of Information

Technology
National University of Ireland

Galway
jim.duggan@nuigalway.ie

Enda Howley
Discipline of Information

Technology
National University of Ireland

Galway
ehowley@nuigalway.ie

ABSTRACT
In a Multi-Agent System (MAS), multiple agents act au-
tonomously in a common environment. Agents in compet-
itive MAS are self-interested, so they typically come into
conflict with each other when trying to achieve their own
goals. One such example is that of multiple agents shar-
ing a common resource, where each agent seeks to maximise
its own gain without consideration for the welfare of other
agents in the system. In the case of a scarce resource, over-
exploitation occurs when all agents follow a greedy strat-
egy. This can have disastrous consequences, in some cases
damaging the resource to the detriment of all agents in the
system. This scenario is referred to as the Tragedy of the
Commons. We introduce the Tragic Commons Domain as a
means to study resource dilemmas using the MAS paradigm,
and apply Reinforcement Learning (RL) with various credit
assignment techniques to learn solutions to the problem. We
also investigate Potential-Based Reward Shaping (PBRS) as
a possible mechanism to discourage over-exploitation of a re-
source by greedy agents. Our experimental work shows that
PBRS can be used to guide self-interested RL agents to-
wards policies which both conserve resources and maximise
collective gains in resource dilemmas. Furthermore, we find
that self-interested agents learning with appropriate heuris-
tics provided by PBRS reach a level of performance which is
comparable to that of agents which are explicitly designed
to maximise collective gains.

1. INTRODUCTION
In a Multi-Agent System (MAS), multiple agents act au-

tonomously in a common environment. Agents in a MAS
may be cooperative, competitive, or a may exhibit elements
of both behaviours. Agents in a cooperative MAS are de-
signed to work together to achieve a system-level goal [22],
whereas agents in a competitive MAS are self-interested
and may come into conflict with each other when trying
to achieve their own individual goals. Numerous complex,
real world systems have been successfully optimised using
the MAS framework, including air traffic control [15], traffic
signal control [9], electricity generator scheduling [10], and

data routing in networks [20], to name a few examples.
Reinforcement Learning (RL) has proven to be success-

ful in developing suitable joint policies for cooperative MAS
in all of the problem domains mentioned above. RL agents
learn by maximising a scalar reward signal from the envi-
ronment, and thus the design of the reward function directly
affects the policies learned. The issue of credit assignment
in Multi-Agent Reinforcement Learning (MARL) is an area
of active research with numerous open questions. Reward
shaping has been investigated as a mechanism to guide ex-
ploration in both single- and multi-agent RL problems, with
promising results. Potential-Based Reward Shaping (PBRS)
is a form of reward shaping that provides theoretical guar-
antees while guiding agents using heuristic knowledge about
a problem.

In this paper we explore the question of how best to utilise
a common resource using the MAS paradigm. When mul-
tiple self-interested agents share a common resource, each
agent seeks to maximise its own gain without consideration
for the welfare of other agents in the system. In the case of
a scarce resource, over-exploitation occurs when all agents
follow a greedy strategy. This can have disastrous conse-
quences, in some cases damaging the resource to the detri-
ment of all agents in the system. This scenario is referred to
as the Tragedy of the Commons. We introduce the Tragic
Commons domain as a means to study resource dilemmas
using the MAS paradigm. The Tragic Commons Domain is
a Stochastic Game which is inspired by both N-player dilem-
mas and resource dilemmas from the field of Game Theory.
We apply Reinforcement Learning (RL) with various credit
assignment techniques to learn solutions to the problem. We
also investigate Potential-Based Reward Shaping as a possi-
ble mechanism to discourage over-exploitation of a resource
by greedy agents.

The contributions of this paper are as follows: 1) We intro-
duce the Tragic Commons Domain as a testbed for MARL
research into resource dilemmas; 2) We evaluate the suit-
ability of joint policies learned under various different MARL
credit assignment structures for this problem; 3) We demon-
strate empirically that PBRS can be used to encourage self-
interested agents towards policies which maximise both in-

20

dividual and collective gains in resource dilemmas, and that
self-interested agents learning with appropriate heuristics
provided by PBRS reach a level of performance which is
comparable to that of agents which are explicitly designed
to maximise collective gains.

In the next section of this paper, we discuss the neces-
sary terminology and relevant literature. We then describe
the Tragic Commons environment, and the resource dilem-
mas which inspired it. The following section presents our
experimental results, and we then conclude our paper with
a discussion of our findings and possible future extensions
to this work.

2. RELATED WORK

2.1 Reinforcement Learning
Reinforcement Learning (RL) is a powerful Machine Learn-

ing paradigm, in which autonomous agents have the capa-
bility to learn through experience. An RL agent learns in an
unknown environment, usually without any prior knowledge
of how to behave. The agent receives a scalar reward signal r
based on the outcomes of previously selected actions, which
can be either negative or positive. Markov Decision Pro-
cesses (MDPs) are considered the de facto standard when
formalising problems involving a single agent learning se-
quential decision making [18]. A MDP consists of a reward
function R, set of states S, set of actions A, and a transi-
tion function T [12], i.e. a tuple < S,A, T,R >. When in
any state s ∈ S, selecting an action a ∈ A will result in the
environment entering a new state s′ ∈ S with probability
T (s, a, s′) ∈ (0, 1), and give a reward r = R(s, a, s′).

An agent’s behaviour in its environment is determined by
its policy π. A policy is a mapping from states to actions
that determines which action is chosen by the agent for a
given state. The goal of any MDP is to find the best policy
(one which gives the highest expected sum of discounted re-
wards) [18]. The optimal policy for a MDP is denoted π*.
Designing an appropriate reward function for the environ-
ment is important, as an RL agent will attempt to maximise
the return from this function, which will determine the pol-
icy learned.

RL can be classified into two paradigms: model-based
(e.g. Dyna, Rmax) and model-free (e.g. Q-Learning, SARSA).
In the case of model-based approaches, agents attempt to
learn the transition function T , which can then be used when
making action selections. By contrast, in the model-free ap-
proach knowledge of T is not a requirement. Model-free
learners instead sample the underlying MDP directly in or-
der to gain knowledge about the unknown model, in the form
of value function estimates (Q values). These estimates rep-
resent the expected reward for each state action pair, which
aid the agent in deciding which action is most desirable to
select when in a certain state. The agent must strike a bal-
ance between exploiting known good actions and exploring
the consequences of new actions in order to maximise the
reward received during its lifetime. Two algorithms that
are commonly used to manage the exploration exploitation
trade-off are ε-greedy and softmax (Boltzmann) [18].

Q-Learning [17] is one of the most commonly used RL al-
gorithms. It a model-free learning algorithm that has been
shown to converge to the optimum action-values with prob-
ability 1, so long as all actions in all states are sampled in-
finitely and the action-values are represented discretely [16].

In Q-Learning, the Q values are updated according to the
equation below:

Q(s, a)← Q(s, a) + α[r + γmax
a′

Q(s′, a′)−Q(s, a)] (1)

where α ∈ [0, 1] is the learning rate and γ ∈ [0, 1] is the
discount factor.

2.2 Multi-Agent Reinforcement Learning
The single-agent MDP framework becomes inadequate when

we consider multiple autonomous learners acting in the same
environment. Instead, the more general Stochastic Game
(SG) may be used in the case of a MAS [2]. A SG is defined
as a tuple < S,A1...n, T,R1...n >, where n is the number
of agents, S is the set of states, Ai is the set of actions for
agent i (and A is the joint action set), T is the transition
function, and Ri is the reward function for agent i.

The SG looks very similar to the MDP framework, apart
from the addition of multiple agents. In fact, for the case
of n = 1 a SG then becomes a MDP. The next environment
state and the rewards received by each agent depend on the
joint action of all of the agents in the SG. Note also that each
agent may receive a different reward for a state transition,
as each agent has its own separate reward function. In a SG,
the agents may all have the same goal (collaborative SG),
totally opposing goals (competitive SG), or there may be
elements of collaboration and competition between agents
(mixed SG).

One of two different approaches is typically used when RL
is applied to MAS: multiple individual learners or joint ac-
tion learners. In the former case multiple agents deployed
into an environment each use a single-agent RL algorithm,
whereas joint action learners use multi-agent specific algo-
rithms which take account of the presence of other agents.
When multiple self-interested agents learn and act together
in the same environment, it is generally not possible for all
agents to receive the maximum possible reward. Therefore,
MAS are typically designed to converge to a Nash Equilib-
rium [14]. While it is possible for multiple individual learners
to converge to a point of equilibrium, there is no theoretical
guarantee that the agents will converge to a Pareto optimal
joint policy.

2.3 Reward Shaping
RL agents typically learn how to act in their environment

guided by the reward signal alone. Reward shaping provides
a mechanism to guide an agent’s exploration of its environ-
ment, via the addition of a shaping signal to the reward
signal naturally received from the environment. The goal of
this approach is to increase learning speed and/or improve
the final policy learned. Generally, the reward function is
modified as follows:

R′ = R+ F (2)

whereR is the original reward function, F is the additional
shaping reward, and R′ is the modified reward signal given
to the agent.

Empirical evidence has shown that reward shaping can be
a powerful tool to improve the learning speed of RL agents
[13]; however, it can have unintended consequences. A clas-
sic example of reward shaping gone wrong is reported by
Randløv and Alstrøm [13]. The authors designed an RL

21

agent capable of learning to cycle a bicycle towards a goal,
and used reward shaping to speed up the learning process.
However, they encountered the issue of positive reward cy-
cles due to a poorly designed shaping function. The agent
discovered that it could accumulate a greater reward by cy-
cling in circles continuously to collect the shaping reward
encouraging it to stay balanced, than it could by reach-
ing the goal state. As we discussed earlier, an RL agent
will attempt to maximise its long-term reward, so the pol-
icy learned depends directly on the reward function. Thus,
shaping rewards in an arbitrary fashion can modify the op-
timal policy and cause unintended behaviour.

Ng et al. [11] proposed Potential-Based Reward Shaping
(PBRS) to deal with these shortcomings. When implement-
ing PBRS, each possible system state has a certain potential,
which allows the system designer to express a preference for
an agent to reach certain system states. For example, states
closer to the goal state of a problem domain could be as-
signed higher potentials than those that are further away.
Ng et al. defined the additional shaping reward F for an
agent receiving PBRS as shown in Eqn. 3 below:

F (s, s′) = γΦ(s′)− Φ(s) (3)

where Φ(s) is the potential function which returns the
potential for a state s, and γ is the same discount factor used
when updating value function estimates. PBRS has been
proven not to alter the optimal policy of a single agent acting
in infinite-state and finite-state MDPs [11], and thus does
not suffer from the problems of arbitrary reward shaping
approaches outlined above. In single agent RL, even with a
poorly designed potential function, the worst case is that an
agent may learn more slowly than without shaping but the
final policy is unaffected.

However, the form of PBRS proposed by Ng et al. can
only express a designer’s preference for an agent to be in
a certain state, and therefore cannot make use of domain
knowledge that recommends actions. Wiewieora et al. [19]
proposed an extension to PBRS called Potential Based Ad-
vice, that includes actions as well as states in the potential
function. The authors propose two methods of Potential-
Based Advice: Look-Ahead Advice and Look-Back Advice.
The former method defines the additional reward received
F as follows:

F (s, a, s′, a′) = γΦ(s′, a′)− Φ(s, a) (4)

Wiewieora et al. [19] provided a proof of policy invariance
for Look-Ahead Advice for single agent learning scenarios.
No corresponding proof has been provided for Look-Back
Advice, although empirical results suggest that this method
also does not alter the optimal policy in single agent learning
scenarios. To maintain policy invariance when using Look-
Ahead Advice, the agent must choose the action that has
the maximum sum of both Q-value and potential:

π(s) = argmaxa(Q(s, a) + Φ(s, a)) (5)

where π(s) is the agent’s policy in state s (the action that
will be chosen by the agent in state s).

We will use Wieiwora’s Look-Ahead Advice to test action-
based heuristics in the experimental section of this paper.
From this point forth, we will use the abbreviations sPBRS
and aPBRS to refer to PBRS approaches with state-based

and action-based potential functions respectively.
In MARL, work by Devlin and Kudenko [5] proved that

PBRS does not alter the set of Nash equilibria of a SG.
Furthermore, Devlin and Kudenko [6] also proved that the
potential function can be changed dynamically during learn-
ing, while still preserving the guarantees of policy invariance
and consistent Nash equilibria. PBRS does not alter the set
of Nash equilibria of a MAS, but it can affect the joint policy
learned. It has been empirically demonstrated that agents
guided by a well-designed potential function can learn at an
increased rate and converge to better joint policies, when
compared to agents learning without PBRS [4]. However,
with an unsuitable potential function, agents learning with
PBRS can converge to worse joint policies than those learn-
ing without PBRS.

2.4 Multi-Agent Credit Assignment Structures
Here we introduce the MARL credit assignment struc-

tures that we will evaluate on the Tragic Commons domain.
Two typical reward functions for MARL exist: local rewards
unique to each agent and global rewards representative of
the group’s performance. In addition to these basic credit
assignment structures, we also evaluate the performance of
several other shaped reward functions.

A local reward (Li) is based on the utility of the part of
a system that agent i can observe directly. Individual agents
are self-interested, and each will selfishly seek to maximise
its own local reward signal, often at the expense of global
system performance when locally beneficial actions are in
conflict with the optimal joint policy.

A global reward (G) provides a signal to the agents
which is based on the utility of the entire system. Rewards of
this form encourage all agents to act in the system’s interest,
with the caveat that an individual agent’s contribution to
the system performance is not clearly defined. All agents
receive the same reward signal, regardless of whether their
actions actually improved the system performance.

A difference reward (Di) is a shaped reward signal that
aims to quantify each agent’s individual contribution to the
system performance [21]. The unshaped reward is equal to
G(z), and the shaping term is −G(z−i). Formally:

Di(z) = G(z)−G(z−i) (6)

where Di is the reward received by agent i, G(z) is the
global system utility, and G(z−i) is the global utility for
a theoretical system without the contribution of agent i.
Here z is a general term that may represent either states
or state-action pairs, depending on the specific application.
Difference rewards are a well-established shaping methodol-
ogy, with many successful applications in MARL (e.g. [10,
15, 20]). However, they do not provide the same theoretical
guarantees as potential-based shaping approaches, and thus
their use may modify the set of Nash equilibria of a SG.

Counterfactual as Potential (CaP), proposed by De-
vlin et al. [7], is an automated method of generating multi-
agent potential functions using the same knowledge repre-
sented by difference rewards. CaP automatically assigns po-
tentials to states using the counterfactual term G(z−i), so
that Φ(s) = G(z−i). In this framework, the unshaped re-
wardR(s, a, s′) = G(s, a, s′), and the shaping reward F (s, s′)
is calculated as normal in PBRS according to Eqn. 3. As
Φ(s) for agent i is in fact based on the state of the other
agents in the system, the potential function is dynamic, and

22

CaP is thus an instance of Dynamic PBRS [6]. CaP there-
fore preserves the guarantee of consistent Nash equilibria,
while incorporating knowledge based on difference rewards
in an automated manner. According to the proof of necessity
for PBRS [11], there must exist a problem domain for which
difference rewards alter the Nash equilibria of the system [7].
For applications that specifically require the guarantees of
PBRS, CaP may be a viable alternative to D, as it benefits
from the theoretical properties of PBRS whilst leveraging
the same information that is represented by D.

3. THE TRAGIC COMMONS DOMAIN
In this section we introduce the Tragic Commons Domain

(TCD), a Stochastic Game designed with the intent of study-
ing resource dilemmas using the MAS paradigm. As men-
tioned earlier, this domain was inspired by N-player dilem-
mas and resource dilemmas from the field of Game Theory.
An example of a simple dilemma is the Prisoner’s Dilemma
[1], a well-studied problem in which two players (agents)
have the options to either cooperate or defect. Mutual co-
operation results in the highest global utility; however if one
player defects he receives a higher reward, while the coop-
erating player receives the sucker’s payoff. If both players
choose to defect, they both receive a low payoff. The princi-
ples of the Prisoner’s Dilemma can be extended to N-player
dilemmas, where N players must choose to cooperate or de-
fect [1].

Resource dilemmas are an example of an N-player dilemma,
where multiple self-interested agents share a common re-
source, and each seeks to maximise its own returns. Agents
may cooperate to conserve the resource and utilise it in a sus-
tainable manner, or they may defect and selfishly attempt
to extract the maximum value possible from the resource.
When a majority of agents act conservatively, there is an in-
centive for agents to defect so that they will receive a better
than average payoff.

However, as more agents choose to defect the resource be-
comes over-exploited, and the global payoff is less than if
all agents cooperate. Furthermore, when over-exploitation
becomes the norm there is no incentive for a self-interested
agent to act conservatively; to do so would reduce the in-
dividual’s payoff. The dominant strategy is thus to defect
but, paradoxically, if all agents cooperate they maximise the
collective benefit, and each does better than if all play the
dominant strategy.

There are numerous real-world examples of resource or
commons dilemmas; any natural resource that is owned and
used in common by multiple entities presents a dilemma of
how best to utilise it in a sustainable manner. Examples
include fish stocks, wildlife, water resources, woodlands and
common pastures. There are also examples of negative com-
mons, e.g. atmospheric pollution or fraudulent activities,
where an individual may benefit by damaging a common
resource to the detriment of all.

Previous research into commons dilemmas has used ap-
proaches such as evolutionary computation [8] and learning
automata [3] to develop cooperation among agents. In this
empirical study, we explore the possibility of using PBRS to
encourage cooperative strategies among self-interested RL
agents. Agents learning using L are purely self-interested,
and seek to maximise their own utility. As a comparison and
to provide an upper bound on possible performance, we have
also tested agents using reward functions that are explicitly

designed to maximise the system utility (G and D).
In the Tragic Commons Domain, N agents each have the

right to graze their livestock in a common pasture. At each
timestep, the agents decide how many of their own animals
will graze in the commons until the next timestep. Thus
the action set for each agent is A = {amin, ..., amax}, where
amin and amax correspond to the minimum and maximum
number of animals that each agent is allowed to graze in the
commons. The state for each agent is defined as the number
of its own animals currently grazing in the commons. We
define the occupancy of the commons ς as the sum of the
animals placed in the commons by all agents n ∈ N at any
particular time:

ς =

n=N∑

n=1

sn (7)

Animals left grazing in the commons will increase in value
between timesteps. We define χ as the increase in value for
an animal left grazing in the commons for one timestep.
However, there is a maximum number of animals the com-
mons can sustain without deterioration from overgrazing.
The capacity of the commons ψ is defined as the number of
animals which can sustainably graze the commons without
causing damage. Animals left grazing in the commons when
it is at or below capacity will increase in value by the max-
imum χmax. When the commons is over capacity, animals
increase in value by a lower rate due to the lower quantity
and quality of food available. The value of χ is related to
the occupancy of the commons by the following equation:

χ(ς) =




χmax if ς <= ψ

χmax −
(χmax − χmin)× (ς − ψ)

ςmax − ψ
otherwise

(8)
Thus, the global benefit is maximised when ς = ψ, as all

animals in the commons increase in value by the maximum
rate. Values of ς that are less than ψ do not utilise the re-
source to its full potential, whereas values of ς greater than
ψ result in damage to the resource, and a corresponding de-
crease in the collective benefit. Agents which select actions
less than or equal to ψ

N
are acting in a fair and conservative

manner, analogously to the agents who choose to cooper-
ate in the earlier example. Whereas agents who choose ac-
tions greater than ψ

N
are acting in an unfair and exploitative

manner, similarly to agents who choose to defect in a classic
N-Player dilemma.

We use the commons value as a measure for the system
utility, where the commons value for an episode is the sum of
the products of χ and ς for each timestep. The relationship
between the commons value and ς for the parameter values
that we have chosen for our experiments is shown in Fig. 1.

The local reward for a self-interested agent i is calculated
based on the added value per animal multiplied by the num-
ber of animals the agent currently has in the commons. For-
mally:

Li(si, ai, s
′
i) = χ(ς ′)s′i (9)

The global reward for a self-interested agent is calculated
based on the added value per animal multiplied by the total
number of animals in the commons. This is a per-timestep
version of the commons value metric that is used to measure
overall episode performance. Formally:

23

Figure 1: Occupancy vs. commons value for an entire
episode of the Tragic Commons Domain

G(s, a, s′) = χ(ς ′)ς ′ (10)

The counterfactual for agent i, to be used with D and
CaP , is calculated by assuming that the agent chose the
same action as in the previous timestep i.e. a = s = s′. This
means that a counterfactual occupancy ς(z−i) and a counter-
factual animal value χ(z−i) must be calculated. The coun-
terfactual term is then calculated as the product of ς(z−i)
and χ(z−i). Formally:

ς(z−i) =

n=N∑

n=1
n 6=i

s′n + si (11)

χ(z−i) = χ(ς(z−i)) (12)

G(z−i) = χ(z−i)ς(z−i) (13)

3.1 PBRS Heuristics
To explore the effectiveness of PBRS in this domain, we

apply three different manual heuristics in addition to the
automated CaP heuristic. Each heuristic is expressed in
both a state-based and action-based form. The heuristics
used are:

• Fair: Agents are encouraged to act in a fair manner,
where each agent is encouraged to graze the optimal
number of animals (i.e. ψ

N
) in the commons. This

heuristic is expected to perform extremely well, and
will demonstrate the effect of PBRS when advice can
be given about the optimal policy.

Φ(s) =




ψχmax

N
if s =

ψ

N
0 otherwise

(14)

Φ(s, a) =




ψχmax

N
if a =

ψ

N
0 otherwise

(15)

• Opportunistic: Agents opportunistically seek to utilise
any spare capacity available in the commons. As the

available spare capacity is dependent on the joint ac-
tions of all agents in the system, the value of this po-
tential function changes over time. Thus, this heuristic
is an instance of dynamic PBRS [6]. This is a weaker
shaping than Fair, and is included to demonstrate the
effect of PBRS with a sub-optimal heuristic, for con-
texts where the optimal policy is not known.

Φ(s) =

{
sχmax if ς < ψ

0 otherwise
(16)

Φ(s, a) =

{
aχmax if ς < ψ

0 otherwise
(17)

• Greedy: Agents are encouraged to behave greedily,
where each agent seeks to graze the maximum possible
number of animals in the commons. This is an exam-
ple of an extremely poor heuristic, and is expected to
reduce the performance of all agents receiving it.

Φ(s) =

{
smaxχmax if s = smax

0 otherwise
(18)

Φ(s, a) =

{
amaxχmax if a = amax

0 otherwise
(19)

3.2 Experimental Procedure
We test two variations of the TC domain: a single-step

version with num timesteps = 1 and a multi-step version
with num timesteps = 12. The other experimental pa-
rameters used were as follows: num episodes = 20, 000,
N = 20, ψ = 80, χmax = $1000/num timesteps, χmin =
$400/num timesteps, amin = smin = 0, amax = smax = 6,
ςmax = 120 (from Eqn. 7). All agents begin each episode
with their initial state set to 0 (i.e. no animals grazing in
the commons).

We apply multiple individual Q-Learning agents to the
Tragic Commons Domain defined above, learning with credit
assignment structures L, G, D, along with various shaping
heuristics. The learning parameters for all agents are set as
follows: α = 0.20, γ = 0.90, ε = 0.10. Both α and ε are re-
duced by multiplication with their respective decay rates at
the end of each episode, with alpha decay rate = 0.9999 and
epsilon decay rate = 0.9999. These values were selected fol-
lowing parameter sweeps to determine the best performing
settings. Each agent’s Q values for all state action pairs are
initialised to 0 at the start of each experimental run.

Along with the MARL approaches tested, we have also
conducted experiments with three simple agent types: Opti-
mal, Random, and Greedy. Optimal agents always select the
action equal to ψ

N
, and thus will maximise the global bene-

fit. The random agents select actions randomly with equal
probability. The greedy agents always select amax i.e. they
play the dominant strategy, which is to graze as many ani-
mals as possible in the commons. Optimal and Greedy give
the upper and lower performance bounds for this problem,
and serve as a useful comparison to the MARL approaches
tested.

24

Figure 2: Comparison of commons values for L, G, and D
in the single-step Tragic Commons Domain

Figure 3: Comparison of occupancy values for L, G, and D
in the single-step Tragic Commons Domain

4. RESULTS
For the single-step version of the problem, Figs. 2 to 5

show learning curves for commons value and occupancy for
the approaches tested, and the average performance of the
approaches tested over the final 2000 episodes is shown in
Table 1. For the multi-step version, Figs. 6 to 9 show learn-
ing curves for commons value and occupancy, and the aver-
age performance of the approaches tested over the final 2000
episodes is shown in Table 2.

All plots include error bars representative of the standard
error of the mean based on 50 statistical runs. Specifically,
we calculate the error as σ/

√
n where σ is the standard

deviation and n is the number of statistical runs. Error
bars are included on all plots at 200 episode intervals. The
plots show the average performance across the 50 statistical
runs that were conducted at 10 episode intervals. All claims
of statistical significance are supported by two-tailed t-tests
assuming unequal variances, with p = 0.05 selected as the
threshold for significance.

We can see from the learning curves that L starts out at
quite a high level of performance, but this quickly degrades,
eventually reaching a final policy close to that of the Greedy
agents. The performance of L is significantly worse than the
Random baseline in both the single step (p = 2.36× 10−57)
and multi-step (p = 2×10−105) versions of the problem. Self-

Figure 4: Comparison of commons values for L with various
heuristics in the single-step Tragic Commons Domain

Figure 5: Comparison of commons values for G with various
heuristics in the single-step Tragic Commons Domain

interested agents learning with L greedily seek to exploit the
resource, as evidenced by the occupancy curves in Figs. 3
and 7, where the agents consistently learn to graze close to
the maximum allowed number of animals in the commons
by the final training episodes.

By contrast, the approaches explicitly designed to max-
imise the global utility (G and D) perform quite well in the
Tragic Commons Domain. Rather than working at cross-
purposes and seeking to exploit the resource to the maxi-
mum extent possible, agents learning using G and D con-
verge to policies that utilise the shared resource in a fair
and conservative manner, and both come close to the opti-
mal level of performance in the single-step and multi-step
variants of the problem. In both variants of the problem, D
reaches a high level of performance very quickly, and learns
more quickly than G. However, in the single-step TCD, G
in fact reaches a higher final performance than D (99.2%
of optimal performance for G, vs. 98.5% of optimal per-
formance for D). This difference in final performance was
found to be statistically significant (p = 0.025). D learned
a better final policy than G in the multi-step version of the
problem (99.0% of optimal performance for D, vs. 98.3%
of optimal performance for G). D was found to offer sta-
tistically better performance than G in the multi-step TCD
(p = 1.41× 10−23).

25

Figure 6: Comparison of commons values for L, G, and D
in the multi-step Tragic Commons Domain

Figure 7: Comparison of occupancy values for L, G, and D
in the multi-step Tragic Commons Domain

Devlin et al. [7] originally proposed CaP as a shaping
heuristic for G; however we have also tested L + CaP here
in addition to the originally proposed G + CaP . G + CaP
does not perform quite as well as G in either version of this
problem domain. We find that CaP is a good heuristic for
shaping L, reaching 97.1% of the optimal commons value
in the single-step TCD, and 79.5% of the optimal commons
value in the multi-step TCD. L + CaP offers a significant
improvement over the Random baseline (and therefore un-
shaped L) in both the single-step (p = 2.36 × 10−57) and
multi-step (p = 1.47× 10−11) TCD.

The aPBRS(Fair) heuristic performs exceptionally well
when combined with both L and G, in all cases reaching
over 99% of the optimal commons value of $80, 000. This
is an extremely strong heuristic, that can guide even self-
interested agents towards the optimal joint policy in the
Tragic Commons Domain. L+ aPBRS(Fair) was found to
offer statistically similar performance to G+aPBRS(Fair)
in the single-step version (p = 0.94), and statistically bet-
ter performance than G + aPBRS(Fair) in the multi-step
(p = 2.7 × 10−6) version. The sPBRS(Fair) shaping per-
forms well when combined with G, although not quite as
well as G without shaping. L + sPBRS(Fair) performs
quite similarly to L in both versions of the TCD. The aP-
BRS version of this heuristic is much more effective than the

Figure 8: Comparison of commons values for L with various
heuristics in the multi-step Tragic Commons Domain

Figure 9: Comparison of commons values for G with various
heuristics in the multi-step Tragic Commons Domain

sPBRS version, as aPBRS specifies preferences for actions
directly.

The sPBRS(Oppor.) heuristic is useful when combined
with L to encourage behaviour leading to a high system
utility. L + sPBRS(Oppor.) offers a significant improve-
ment over the Random baseline (and therefore unshaped
L) in both the single-step (p = 3.69× 10−35) and multi-step
(p = 2.42×10−66) TCD.G+sPBRS(Oppor.), however, does
not reach the same performance as unshaped G in either
variant of the TCD. The action-based version of this heuris-
tic performs quite well when combined with G, although
again not as well as the unshaped version of G. When com-
bined with L, aPBRS(Oppor.) is among the worst perform-
ing approaches tested. This is because all agents are en-
couraged to graze the maximum number of animals in the
commons when it is below capacity using this shaping, re-
sulting in a lower overall return. By contrast, the sPBRS
version performs better, as only agents that choose to add
extra animals when the commons is below capacity are given
the shaping reward.

The final PBRS heuristic that we tested was designed
to encourage greedy behaviour in the agents, where each
agent seeks to graze the maximum allowed number of an-
imals in the commons. When combined with L, both the
sPBRS and aPBRS versions of the greedy heuristic reach a

26

Table 1: Single-step Tragic Commons results
(Averaged over last 2000 episodes)

Commons Value ($) ς

Optimal Agents 80,000 80.00
G+ aPBRS(Fair) 79,560 79.69
L+ aPBRS(Fair) 79,559 79.69
G 79,367 81.14
G+ sPBRS(Fair) 79,355 81.49
G+ sPBRS(Greedy) 79,309 81.43
D 78,821 79.30
G+ aPBRS(Oppor.) 78,488 81.52
G+ CaP 78,295 83.66
L+ CaP 77,691 86.18
G+ sPBRS(Oppor.) 77,468 77.54
L+ sPBRS(Oppor.) 71,393 71.52
G+ aPBRS(Greedy) 65,744 100.69
Random Agents 59,925 59.97
L+ sPBRS(Fair) 52,456 116.53
L 51,617 117.18
L+ sPBRS(Greedy) 50,630 117.98
L+ aPBRS(Greedy) 49,198 119.10
L+ aPBRS(Oppor.) 49,172 119.11
Greedy Agents 48,000 120.00

lower final level of performance than unshaped L. The aP-
BRS version of this heuristic learns more quickly, again as
the preferences for actions are defined directly. When com-
bined with G, the sPBRS(Greedy) heuristic reduces the
final performance by a small amount compared to unshaped
G. G+aPBRS(Greedy) results in much lower performance
than unshaped G in both versions of the TCD. As G is a
much better performing reward function than L, the agents
learning using G manage to overcome the incorrect knowl-
edge that is provided to them, and to converge to reasonably
good final policies. By contrast, the greedy heuristic serves
to accentuate the self-interested nature of agents learning
using L, especially in the case of L+ aPBRS(Greedy).

5. CONCLUSION
In this paper, we have analysed a variant of a classic re-

source dilemma from the field of Game Theory using the
MAS paradigm. We introduced the Tragic Commons Do-
main, a resource dilemma where multiple agents share graz-
ing rights on a common pasture, and must utilise this com-
mon resource in a sustainable manner to maximise the global
benefit. We applied MARL to learn solutions to this prob-
lem, and compared the performance of variants with self-
interested agents (L) to that of variants where all agents
are explicitly designed to maximise the collective utility (G
and D). Potential-Based Reward Shaping was investigated
as a possible mechanism to encourage self-interested agents
towards policies which conserve resources and maximise col-
lective gains. We tested four different heuristics in both
state-based and action-based forms. Our experimental work
demonstrated that PBRS is a useful mechanism to encour-
age cooperative behaviour among self-interested agents, even
when heuristics of varying quality are used. As we expected,
L+aPBRS(Fair) met or exceeded the performance of both
G and D, as the Fair heuristic is designed to guide agents to-
wards the optimal policy. L+sPBRS(Oppor.) and L+CaP

Table 2: Multi-step Tragic Commons results
(Averaged over last 2000 episodes)

Commons Value ($) ς

Optimal Agents 80,000 80.00
L+ aPBRS(Fair) 79,272 79.70
G+ aPBRS(Fair) 79,247 79.68
D 79,207 81.63
G 78,657 82.79
G+ sPBRS(Greedy) 78,626 82.74
G+ sPBRS(Fair) 78,562 82.78
G+ CaP 77,614 82.00
G+ aPBRS(Oppor.) 77,297 80.67
L+ sPBRS(Oppor.) 76,922 83.99
G+ sPBRS(Oppor.) 76,246 77.49
G+ aPBRS(Greedy) 71,922 94.22
L+ CaP 63,622 106.65
Random Agents 59,762 60.00
L 49,282 118.82
L+ sPBRS(Fair) 49,238 118.86
L+ sPBRS(Greedy) 49,210 118.88
L+ aPBRS(Oppor.) 49,085 118.97
L+ aPBRS(Greedy) 48,842 119.11
Greedy Agents 48,000 120.00

show that sub-optimal heuristics can also encourage fair and
conservative behaviour in self-interested agents, and in all
cases these shapings outperform L. L+CaP offers an auto-
mated mechanism to shape the behaviour of self-interested
agents without any prior knowledge of the application do-
main, and thus does not have to be implemented bespoke
for each new application domain.

Several possibilities for further research are raised by the
work presented in this paper. An interesting finding from
our work is that sPBRS and aPBRS variants using the same
heuristic knowledge can encourage very different behaviours.
We intend to explore the reasons for this more fully in fu-
ture work. In the future, we also intend to analyse other
more complex resource/commons dilemmas using the MAS
paradigm. Examples that we are currently considering in-
clude management of fish stocks and water resources.

Acknowledgments
Patrick Mannion is funded by the Irish Research Council
through the Government of Ireland Postgraduate Scholar-
ship Scheme.

REFERENCES
[1] K. Binmore. Playing for Real: A Text on Game

Theory. Oxford University Press, 2012.

[2] L. Buşoniu, R. Babuška, and B. Schutter. Multi-agent
reinforcement learning: An overview. In D. Srinivasan
and L. Jain, editors, Innovations in Multi-Agent
Systems and Applications - 1, volume 310 of Studies in
Computational Intelligence, pages 183–221. Springer
Berlin Heidelberg, 2010.

[3] S. de Jong and K. Tuyls. Learning to cooperate in a
continuous tragedy of the commons. In Proceedings of
the 8th International Conference on Autonomous
Agents and Multiagent Systems (AAMAS), volume 2,

27

pages 1185–1186, 2009.

[4] S. Devlin, M. Grzes, and D. Kudenko. An empirical
study of potential-based reward shaping and advice in
complex, multi-agent systems. Advances in Complex
Systems, 14(2):251–278, 2011.

[5] S. Devlin and D. Kudenko. Theoretical considerations
of potential-based reward shaping for multi-agent
systems. In Proceedings of the 10th International
Conference on Autonomous Agents and Multiagent
Systems (AAMAS), pages 225–232, 2011.

[6] S. Devlin and D. Kudenko. Dynamic potential-based
reward shaping. In Proceedings of the 11th
International Conference on Autonomous Agents and
Multiagent Systems (AAMAS), pages 433–440, 2012.

[7] S. Devlin, L. Yliniemi, D. Kudenko, and K. Tumer.
Potential-based difference rewards for multiagent
reinforcement learning. In Proceedings of the 13th
International Conference on Autonomous Agents and
Multiagent Systems (AAMAS), pages 165–172, 2014.

[8] E. Howley and J. Duggan. Investing in the commons:
A study of openness and the emergence of cooperation.
Advances in Complex Systems, 14(02):229–250, 2011.

[9] P. Mannion, J. Duggan, and E. Howley. An
experimental review of reinforcement learning
algorithms for adaptive traffic signal control. In
L. McCluskey, A. Kotsialos, J. P. Mueller, F. Kluegl,
O. Rana, and R. Schumann, editors, Autonomic Road
Transport Support Systems, Autonomic Systems.
Birkhauser/Springer, 2016 (in press).

[10] P. Mannion, K. Mason, S. Devlin, J. Duggan, and
E. Howley. Multi-objective dynamic dispatch
optimisation using multi-agent reinforcement learning.
In Proceedings of the 15th International Conference on
Autonomous Agents and Multiagent Systems
(AAMAS), May 2016 (in press).

[11] A. Y. Ng, D. Harada, and S. J. Russell. Policy
invariance under reward transformations: Theory and
application to reward shaping. In Proceedings of the
Sixteenth International Conference on Machine
Learning, ICML ’99, pages 278–287, San Francisco,
CA, USA, 1999. Morgan Kaufmann Publishers Inc.

[12] M. L. Puterman. Markov Decision Processes: Discrete
Stochastic Dynamic Programming. John Wiley &
Sons, Inc., New York, NY, USA, 1st edition, 1994.

[13] J. Randløv and P. Alstrøm. Learning to drive a
bicycle using reinforcement learning and shaping. In
Proceedings of the Fifteenth International Conference
on Machine Learning, ICML ’98, pages 463–471, San
Francisco, CA, USA, 1998. Morgan Kaufmann
Publishers Inc.

[14] Y. Shoham, R. Powers, and T. Grenager. If
multi-agent learning is the answer, what is the
question? Artificial Intelligence, 171(7):365–377, 2007.

[15] K. Tumer and A. Agogino. Distributed agent-based air
traffic flow management. In Proceedings of the 6th
International Conference on Autonomous Agents and
Multiagent Systems (AAMAS), pages 330–337,
Honolulu, HI, May 2007.

[16] C. J. Watkins and P. Dayan. Technical note:
Q-learning. Machine Learning, 8(3-4):279–292, 1992.

[17] C. J. C. H. Watkins. Learning from Delayed Rewards.
PhD thesis, King’s College, Cambridge, UK, 1989.

[18] M. Wiering and M. van Otterlo, editors.
Reinforcement Learning: State-of-the-Art. Springer,
2012.

[19] E. Wiewiora, G. Cottrell, and C. Elkan. Principled
methods for advising reinforcement learning agents. In
Proceedings of the Twentieth International Conference
on Machine Learning, pages 792–799, 2003.

[20] D. H. Wolpert and K. Tumer. Collective intelligence,
data routing and braess’ paradox. Journal of Artificial
Intelligence Research, pages 359–387, 2002.

[21] D. H. Wolpert, K. R. Wheeler, and K. Tumer.
Collective intelligence for control of distributed
dynamical systems. EPL (Europhysics Letters),
49(6):708, 2000.

[22] M. Wooldridge. Introduction to Multiagent Systems.
John Wiley & Sons, Inc., New York, NY, USA, 2001.

28

Collaboration in Ad Hoc Teamwork:
Ambiguous Tasks, Roles, and Communication

Jonathan Grizou
Flowers Team

INRIA - ENSTA ParisTech
France

jonathan.grizou@inria.fr

Samuel Barrett
Kiva Systems

North Reading, MA 01864
USA

basamuel@kivasystems.com
Peter Stone

Dept. of Computer Science
The Univ. of Texas at Austin

Austin, TX 78712 USA
pstone@cs.utexas.edu

Manuel Lopes
Flowers Team

INRIA - ENSTA ParisTech
France

manuel.lopes@inria.fr

ABSTRACT
Creating autonomous agents capable of cooperating with previ-
ously unfamiliar teammates, known as “ad hoc teamwork”, has
been identified as an important challenge for multiagent systems.
Previous research has assumed that either the task, the role of each
agent, or the communication protocol among agents is known be-
fore the interaction begins. We consider these three variables si-
multaneously and show how an ad hoc agent can fit into a new
team while handling ambiguous tasks, roles, and communication
protocols. We assume a known distribution of possible tasks, roles,
and communication protocols. We present experimental results in
the pursuit domain showing that our ad hoc agent can join such a
team while barely impacting the overall performance compared to
a pre-coordinated agent.

1. INTRODUCTION
There are many situations where an international effort is needed

to address a particular well focused problem, e.g. rescue efforts in a
natural disaster area. In this setting, multiple robots might be avail-
able, but they are unlikely to have the same software and hardware,
and they will not communicate using standard protocols. Neverthe-
less, they should be able to coordinate to achieve a common goal,
even if team coordination strategies cannot be pre-defined.

This challenge of multi-agent interaction without pre-coordination
is also called the pickup team challenge [10] or the ad hoc team
challenge [14]. It states that agents should learn to collaborate
without defining pre-coordination schemes and/or without know-
ing what the other agents are capable of [6, 10, 14].

In this work, we focus on the ad hoc team challenge ([14]). We
imagine a team of specialized agents that work to achieve a specific
task and coordinate using a specific language. We replace one of
these agents with an ad hoc agent that should learn to collaborate
with the team. The ad hoc agent must take its role in the team and
must therefore identify all of the three following components:

• the task the team is trying to solve, so as to help the team
achieve it;

• the role of each agent, so as to replace the missing special-
ized agent;

• the communication protocol used by the team, so as to be
informed of important facts concerning the task.

We present empirical results in the pursuit domain showing that an
ad hoc agent can efficiently replace any member of such a team.
For this purpose, we assume the ad hoc agent has access to a set
of hypotheses about the possible tasks, team configurations, and
communication systems. Given this information it is possible to
infer which hypothesis is the most likely given the observations
of other agents’ movements and communications. We show that
the default team performance is quickly recovered after our ad hoc
agent is included. We further introduce partial observability and
noise on the agent’s actions and communication.

2. RELATED WORK
Previous research focused on different variations of the problem.
How an ad hoc agent can influence its teammates to achieve a

new task ([13]). It is usually assumed that teammates have limited
action capabilities and a fixed and known behavior. Furthermore,
only the ad hoc agent is aware of the goal of the task and has to
influence the behaviors of the others to fulfill it. [15, 13] define the
general problem and provide a solution for the two agents scenario.
Extension to the multi-teammates case is presented by [1]. An in-
teresting application is the study of how an ad hoc agent can learn
to lead a flock of agents ([9]).

How an ad hoc agent can adapt in a pre-formed team, with
the specific aim of optimally helping the team to achieve its goal
([4]). It is usually assumed the task to achieve is known to the ad
hoc agent. In a first approach the model of the other agents was
known [3], but this assumption was progressively removed: first,
by assuming agents were drawn from a set of possible agents [3,
8], and then, by learning online a model of each teammate [4] –
even considering learning abilities from the other agents [7].

How an ad hoc agent can best communicate with its team-
mates ([2]). This recent work assumes the ad hoc agent is omni-
scient – knowing the task, the model of the agents, and the com-
munication protocol. However, the ad hoc agent does not always
knows how its teammates would react to its messages. The problem
was how to optimally communicate with other agents to improve
the team performance in a k-armed bandit problem.

This paper differs from previous work in that the ad hoc agent
is not informed of the task to be achieved and does not initially
understand the communication of the other agents. Our main con-
tribution is the formulation of this complex problem in a way that
can be addressed by an online method based on a Bayesian filter.
This work shares similarities with previous work in that our team

29

includes specialized agents, as in [8], and we will assume a finite
set of possible teammates and domain configurations, as in [8, 3,
2].

A similar problem, where both the task and the communication
are unknown, has been investigated in human-machine interaction
[12, 11]. They consider only two agents, a teacher and a learner.
Their learning agent can only act on its own towards the success
of the task and can observe non-symbolic communication signals
from the teaching agent, whose meaning is part of a finite set but
initially unknown. This work differs mainly by the multiagent sce-
nario. On the one hand, it makes the problem less tractable, but on
the other hand, it simplifies the problem because the learning agent
has access to more information (i.e. it can observe other agent’s
actions).

3. FLUID COLLABORATION IN AD HOC
TEAMWORK

3.1 Problem Definition
We consider a team B of nB agents B = {b1, . . . , bnB} that is

functional and well suited to solve the task from a domain d ∈ D.
A domain is made of four components:

• An environment E made of nS states, which we denote
{s1, . . . , snS}, and where agents can perform nU actions,
which we denote {u1, . . . , unU }. The environment dynam-
ics are known and described by a probability distribution that
for any given state s and action u gives the probability of a
next state s′, p(s′|s, u, E).

• A task τ that the agents should achieve, represented by a
reward function R.

• A configuration κ that defines the role given to each agent,
i.e. their specialties.

• A protocol ρ that defines the way agents communicate to
each others, i.e. their language. We denote mb as the mes-
sage of an agent b.

A domain is defined by d={E, τ, κ, ρ} that is a subset of all
possible domains D. We denote S as the set of all agent states,
S={sb1 , . . . , sbnB

} and S′ the set of all agent next states. We de-
note M as the set of all agents’ messages, M={mb1 , . . . ,mbnB

}.
We want to evaluate how an ad hoc agent a can adapt in such a do-
main. To evaluate its performance, we remove one agent randomly
from a fully formed team, creating the set B−, and replace it by
the ad hoc agent. The resulting team is denoted as B−a . The team
performance is evaluated on the task τ using the reward function
R. We denote score(B, d) as the score resulting from the team B
executing the problem d, i.e. the accumulated reward. In this work,
we want to create an ad hoc agent that minimizes the score loss be-
tween the original team score(B, d) and the team with the ad hoc
agent score(B−a , d). The problem is that the ad hoc agent needs
to fit into a team yet unknown to it. It must therefore identify all
the components of the domain (E, τ, κ, ρ). The main challenge is
that the ad hoc agent does not have direct access to its performance.
Indeed, it cannot compute score(B−a , d) because d is unknown to
it.

3.2 Algorithm
To tackle this problem, we assume the agent has access to a

bigger set D = {d1, . . . , dnH}, containing nH possible domains,

from which is pulled the particular domain d considered. We fur-
ther consider that, for any given dh, the ad hoc agent can predict,
in a probabilistic way, the expected behavior and communication
of the agents. Hence, our approach relies on computing the poste-
rior probability of each hypothetical domain given the information
available to the ad hoc agent, here the observation from states and
messages of the other agents. The correct hypothesis will be the
one that maximizes this probability:

argmax
h

p(dh|S′, S,M) (1)

where S and S′ are the observed states and next states, andM is the
messages sent by each agent. At each step a new tuple (S′, S,M) is
observed and the probabilities are updated. Following Bayes’ rule,
we have to compute two different components: first the probability
of the observed next states given the initial states, the messages,
and a domain hypothesis p(S′|S,M, dh), and then the probability
of the messages themselves given the oberved states and a domain
hypothesis p(M |S, dh). In the following subsections, we detail
these components as well as how the ad hoc agent plans its actions.

3.2.1 Using state observations
Observing the behavior of all other agents is a valuable source of

information. Given a hypothesis domain dh, we can compute the
probability of the next agent state S′ given the current agent state
S. For each hypothesis, we create a Bayes’ filter that accumulates
the probability of each domain conditionally on the observation of
the agent movements. To do so, we must estimate the probability
that each agent selected each available action. We then estimate the
probability of the observed state given all possible combinations of
agents’ actions and the environment dynamics:

p(dh|S′, S) ∝ p(S′|S, dh)p(dh) (2)

with

p(S′|S, dh) =
∏

i

∑

j

p(s′bi |sbi , uj , Eh)p(uj |sbi , S, dh) (3)

where Eh is the environment in dh which includes the state tran-
sition model. And p(uj |sbi , S, dh) is the model of agent bi action
selection, which is based on all the components of dh and the cur-
rent state of the domain S. Given the agents’ roles, their actions are
independent.

The equation above considers the case of full observability of the
states. As this might not always be true (e.g. partial observability
from the ad hoc agent in section 4.5), the update rule should also
account for partial observability, represented by a discrete proba-
bily distribution on S and S′. The update becomes:

p(dh) =
∑

S′

∑

S

p(dh|S′, S)p(S′)p(S) (4)

which can be expanded as Equation 2 is in Equation 3.

3.2.2 Using communication
Communication can greatly benefit coordination in a team. In

our setting, the messages exchanged can provide two valuable types
of information. First, in case of partial state observation, they help
narrow the probability of the states:

p(S|M,Sobs, dh) (5)

with Sobs being the state observed by the agent. This is helpful
to narrow down the update in equation 4. Second, given a specific
domain hypothesis dh, they can be used to test the coherence of
the messages agents sent based on the associated communication

30

protocol ρh. For example, if messages from all agents do not in-
dicate concordant information, and if they cannot be explained by
communication noise, then the communication protocol associated
to the domain hypothesis dh is not the one used by the team. This
results in an additional domain probability update rule:

p(dh|M,S) ∝ p(M |S, dh)p(dh) (6)

The set of equations defined above are generic update rules for an
ad hoc agent to infer which domain it is facing. Details about their
particular implementation for the pursuit domain are provided in
the following sections.

3.2.3 Planning
We now consider the action selection method for the ad hoc

agent. Previous work considered ad hoc agents that solve the op-
timal teammate problem. Such agents know the model of their
teammates and select their next action in order to improve maxi-
mally the team performance – often resulting in better performance
than the initial team [3]. The aim of this study is different; we
want to demonstrate the fact that the ad hoc agent can work under
fewer assumptions than before and be able to estimate more infor-
mation about the new team. Hence, we isolate our algorithm from
the planning aspects and test whether it can select between can-
didate domains. Therefore, in this work, the ad hoc agent simply
tries to replace a missing agent in the team. To this end, the ad hoc
agent will weight the policies for each domain hypotheses dh by
the probability currently assigned to this configuration p(dh).

p(ua|M,S) =
∑

h

p(ua|M,S, dh)p(dh) (7)

With this planning strategy, once the correct hypothesis is identi-
fied, the ad hoc agent will mimic the default behavior of the agent
it replaces. But the agent is likely to make sensible decisions earlier
as irrelevant hypotheses are discarded.

4. PURSUIT DOMAIN
We test our approach in a variant of the pursuit domain [5]. The

pursuit domain is often used in the multi-agent literature [16] in-
cluding in ad hoc team scenarios [3] and involves a set of predators
aiming at capturing a prey. We consider a 2D discrete toroidal 7x7
grid world (an agent leaving from one side of the grid will “reap-
pear” on the opposite side), 4 predators, and 1 prey. Agents can
perform 5 actions: North, South, East, West, and a “no move” ac-
tion. The task is to lock the prey on a particular grid cell, called
the capture state. To capture the prey, the predators must encircle
it (i.e. one predator on each grid cell nearby the prey). This prob-
lem is well-suited for the ad hoc challenge because the task cannot
be performed by a subset of the predators alone – all team mem-
bers play a key role in accomplishing the task. Figure 1a and 1c
illustrate a random team state and a capture position. For the teams
used in this work, each predator is allocated a specific role in the
team, i.e. taking one side of the prey (North, South, East, or West).
In an advanced scenario, the predators have only partial observ-
ability, which dramatically decreases team efficiency. To overcome
this problem, the predators are given the ability to communicate –
using a specific protocol – about the prey position. Finally, noise is
added to actions and communications.

In the remainder of this section, we describe how agents plan
their actions, as well as the strategy of the predators to surround the
prey at the capture state. We first assume predators have full ob-
servability of the domain and later remove this ability and describe
the communication systems.

4.1 Notation
Each position on the grid is called a state s, which for conve-

nience is also described as the (x, y) coordinate. For each domain
hypothesis d ∈ D, the environment E is the same, including its
dynamic and noise level. A task τ is fully defined by the position
of the capture state, denoted sC , that could be any grid cell. The
reward function is one when the prey is locked on that state and is
zero otherwise. A team configuration κ describes the role of each
agent. For example, κ = [N,E, S,W] indicates that the first agent
is in charge of the North side of the prey, the second one of the East
side, etc. The communication protocol ρ includes a mapping and a
reference (more details are provided in Section 4.5).

4.2 Action selection method
To select their actions, all our agents use a two step process.

They first assign rewards to states they would like to reach. Then,
knowing the full dynamics of the environment, they follow the op-
timal policy computed using dynamic programming methods [17],
here value iteration using a discount factor of 0.95. An agent con-
siders all other agents as static obstacles.

When noise is applied, the result of an action can lead to any of
the orthogonal directions with equal probability (i.e. if the noise
level is 0.2 and considering no obstacle, taking North action results
in the North state with p = 0.8, the East state with p = 0.1, and the
West state with p = 0.1). The noise does not affect the “no move”
action. If an agent moves towards an obstacle, including another
agent or the prey, the action fails and the agent stays in its current
state.

4.3 Escaping prey
The prey tries to escape from its predators by randomly select-

ing an open neighboring cell to move to. When there is no predator
neighboring it, the prey moves randomly. When the prey is sur-
rounded by predators it does not move.

4.4 Specialized predators
The strategy of the team is to guide the prey towards the capture

state. Intuitively, two or three predators constrain the prey to move
in a specific direction while the remaining predators limit the extent
to which the prey can move. For this, some predators will aim
for states neighboring the prey, and others will leave one empty
cell between them and the prey – allowing the prey to move in the
desired direction. Each predator is specialized to handle one side of
the prey (N/S/E/W). For example, the agent in charge of the North
side of the prey will target the state directly North of the prey if the
prey can reach the capture state faster by going South than by going
North. Conversely, if the prey can reach the capture state faster by
going North, the North agent will target the state two cells North of
the prey – leaving space for the prey to move towards the capture
state by the shortest path. Figure 1c and 1d show the targeted team
state when chasing the prey in two different conditions.

If the prey position is known exactly, each predator will aim at
only one state, i.e. only one state will have non zero reward value
for the planning. This corresponds to the situation in Figure 1d.
The same reasoning can be extended for a probabilistic knowledge
of the prey state: for each prey state is associated a target state (as
described above), to which we assign as reward the probability of
the prey being in the state considered. This is of particular impor-
tance for the case of partial observability presented next.

4.5 Partial observability and communication
We introduce partial state observability to this domain. We con-

sider predators that can only see the prey if it is one or two steps

31

(a) A random position. (b) A capture position. (c) The predators chasing
the prey to the North-East.

(d) States to target for each
predator, chasing East.

(e) States observable by a
predator in position (3,3).

Figure 1: Illustration of the pursuit domain, the team strategy, and the partial observability. The green circle is the prey and the red ones are
predators. The cell with a blue circle marked with CS is the capture state.

away from them as illustrated in Figure 1e. The predators can
still see each other. As illustrated in Figure 2, partial observability
dramatically impacts the team performance. Indeed, if a predator
does not see the prey it can only estimate the prey probability to
be uniform over the non-observable states. To combat this issue,
predators are given the ability to communicate about the prey po-
sition. We describe the communication strategy in the following
paragraphs.

Message encoding
If one agent sees the prey, it can broadcast the position of the prey –
informing all other predators. Therefore, as soon as one agent is in
close range with the prey, all other agents are informed, becoming
the full observability case described previously.

Each team comes with its own communication protocol ρ. In
some teams, the predators will communicate about the absolute po-
sition of the prey in the world, i.e. (xprey, yprey). In other teams,
predators will provide the position of the prey relative to their posi-
tions, i.e. ((xprey − xagent)mod w, (yprey − yagent)mod h).
Furthermore, each team has its own “words” to designate each of
the nS locations on the grid. In practice, the language is a map-
ping between a list of symbols and the list of states. In addition,
the communication can be noisy such that agents might not always
report the correct prey state. There is a uniform probability to refer
to a neighboring cell. All predators in a team use the same commu-
nication protocol.

Message decoding
Given a set of messages, the prey position is estimated as follows.
If the predator can see the prey, it ignores all messages. If it cannot
see the prey and there are no messages available, it assigns uni-
form prey probability to all unobservable states. If it cannot see the
prey and some messages are available, it computes, for each mes-
sage, the probability of prey position given its knowledge about the
noise in the communication, the reference (relative/absolute), and
the communication mapping. It then merges this information with
the observability area for each agent – an agent communicates only
if it sees the prey. Finally, if several agents communicate, the prob-
abilities of prey state decoded from each messages are combined.

For a full team, the probability map of the prey state will never
be uniform, i.e. merging the information from messages of dif-
ferent agents will always be coherent. As we will see in the next
section, this might not be the case when the ad hoc agent tries to
understand what is going on by interpreting messages according to
different hypotheses on the communication protocol. Observing a
discrepency between messages will thus be valuable to inferring
the team communication system.

5. AD HOC AGENT IN THE PURSUIT DO-
MAIN

The team described in the previous section is a well-formed and
complete one. Capturing the prey requires all agents to play their
role in the team. We now remove one predator randomly from this
team and replace it by our ad hoc agent using the algorithm pre-
sented in Section 3. For example, this scenario would occur when
our ad hoc agent is used to replace a broken robot. As described,
the ad hoc agent does not know in advance its teammates, but it
has access to a set of possible domains D, which includes a set of
tasks, team configurations, and communication protocols. In addi-
tion, the ad hoc agent has access to the full dynamic model of the
environment.

As detailed in Section 3, to infer the correct configuration the
ad hoc agent can rely on two sources of information. First, it can
partially observe the movements of all the predators. Second, in
the partial observability case, it can observe the communication
broadcasted by all agents. We now describe how our algorithm
has been implemented for the pursuit scenario considered.

5.1 Estimating the Correct Domain
First, the agent can use the observation of other agents’ state as

described in Equation 2. In our pursuit domain, the ad hoc agent
knows the state of all the predators, but, in the partial observability
case, it has uncertainty about the prey position.

p(dh) =
∑

s′prey

∑

sprey

p(dh|S′, S)p(s′prey)p(sprey) (8)

with p(dh|S′, S) as expanded in Equation 3. In the case of full
observability, the sum over all possible prey states disappears. In
the case of partial observability, messages allow to reduce the un-
certainty about the prey state. It is very helpful to narrow the com-
putation of Equation 8. We explicitly write the state of the prey as
sprey in the following equations. sobsprey represents the information
the ad hoc agent has about the prey before integrating information
from the messages. Equation 5 unfolds as:

p(sprey|M, sobsprey, S, dh)

=
∏

i

p(sprey|mbi , sbi , s
obs
prey, ρh) (9)

with ρh from dh and because agents’ messages are independent.
The estimation of the coherence of agents’ messages p(M |S, dh)

from Equation 6 is computationally costly because the prey posi-
tion is not fully observable to the ad hoc agent. It can only rely on
a probability map of the prey state, therefore requiring to update
on all states weigthed by their respective probability. To speed up
the process, we approximates Equation 6 by summing the values

32

of the prey state probability map inferred from the decoding of the
messages in Equation 9.

p(M |S, dh) ≈
∑

s

p(sprey = s|M, sobsprey, S, dh) (10)

For example, if the map is full of zeros, the information decoded
from predators’ messages is not coherent and therefore the hypoth-
esis can be discarded, i.e. p(M |S, dh) = 0. The more the maps
decoded from each agent overlap, the higher the probability.

5.2 Ad hoc communication
The ad hoc agent does not send messages. It would require fur-

ther developments that are not central to the point made in this
work. Indeed, deciding of a communication protocol in the begin-
ning of the experiment – when all hypotheses are viable – is sensi-
tive because a wrong message broadcasted by the ad hoc agent will
impact the behavior of the full team. Especially given that agents
are not capable of handling incoherent messages. As we will see
in next section, not considering ad hoc messages has only a minor
impact on the final performance.

6. RESULTS
We now present several experiments to evaluate how an ad hoc

agent can join a team for which it does not know the specific task,
its role, and the communication signals being used. We will com-
pare several teams: a pre-formed team (T), a team including the
ad hoc agent (A), and a few baselines described next. We consider
several different conditions that affect the team efficiency and the
difficulty for the ad hoc agent to join the team: full observability
(FO) and partial observability without (PO) and with (POC) com-
munication. We present results with 20 percent noise in the action
and communication as described in Section 4.

For each experiment run we randomly create a domain set D,
comprised of a set of 10 task hypotheses, 10 team configurations,
and 10 communication protocols; resulting in 1000 domains. Among
this set, one configuration was selected for the team but was un-
known to the ad hoc agent. All the figures presented next display
the mean and standard error of the variable considered. Standard er-
rors are shown as a shaded area, but, given the high number of sam-
ples (1000 runs using the same random seed for all conditions), it
is barely visible. Statistical results presented are two-sample t-test
to determine if the average final scores of teams are equal.

The code to reproduce these results is available online at https:
//github.com/jgrizou/adhoc_com.

A team of agents is evaluated by its total reward accumulated
in 200 steps, i.e. the number of times the prey was captured. After
each capture of the prey, the predators and the prey position are ran-
domly reassigned. The capture state, the team configuration, and
the communication protocol do not change during the 200 steps.

Default Team Performance.
We start by showing how the different conditions affect the be-

havior of the pre-coordinated team (Figure 2). Partial observability
(T-PO) dramatically impacts the performance of the team, but it
is recovered by the use of communication (T-POC). Yet, T-POC
does not catch up with T-FO (the null hypothesis is rejected with
p = 0.014) because in some configurations none of the agents can
see the prey.

Ad Hoc with Full Observability.
We now remove one of the agents from the standard team and re-

place it with our ad hoc agent (Figure 3). In the case of full observ-
ability the inclusion of the ad hoc agent has no impact, on average,

Figure 2: Comparison of teams with full observability (T-FO), par-
tial observability without (T-PO) and with (T-POC) communica-
tion. The use of communication in the partial observability case
allows recovering similar performances to full observability.

on the team performance (T-FO vs A-FO – the null hypothesis can-
not be rejected with p = 0.276). It means that the ad hoc agent can
correctly identify the correct team configuration without impacting
the behavior of the full team. As a point of comparison, we added
the performance of a team with one of the agents acting randomly
(R-FO). Such a team almost never captures the prey.

Figure 3: Comparison of default team (T-FO), ad hoc team (A-
FO), or a team including a predator with random policy (R-FO).
All predators have full observability. The inclusion of our ad hoc
agent does not impact the performance.

Ad Hoc with Partial Observability.
A more interesting case is when agents act under partial observ-

ability. Here the communication has a fundamental role and it will
be harder for the ad hoc agent to estimate it besides its required role
and the team task. We can see in Figure 4 that the ad hoc agent is
able to successfully estimate task, role, and communication. In the
long term, even in presence of partial observability, the inclusion of
the ad hoc agent has a small impact, on average, on the team per-
formance (the null hypothesis is rejected with p < 0.001). The gap
performance with a pre-formed team could not be reduced further
because the ad hoc agent is not able to use communication itself
to inform the others. For comparison, we simulated a pre-formed

33

team with one mute agent (T-POC-OM) that understand messages
but cannot send messages and a pre-formed team with one non
communication aware agent (T-POC-ONC). Our ad hoc agent per-
forms better than T-POC-ONC (p < 0.001) and similarly to T-POC-
OM (the null hypothesis cannot be rejected with p = 0.139) despite
having 1000 trials, showing that these methods perform similarly.

Figure 4: Comparison of default team (T-POC), ad hoc team
(A-POC), or a team with one muted (T-POC-OM) or one non-
communicanting (T-POC-ONC) predator. All predators have par-
tial observability. The ad hoc agent does not communicate. The
inclusion of our ad hoc agent does not impact the performances
compared to T-POC-OM.

Computational Time.
Given the exact inference method we presented, the computa-

tional cost is high during the first steps because all hypotheses are
still active (Figure 5). Once an hypothesis is discarded (i.e. reaches
a probability of zero), we stop updating its value, reducing the com-
putational cost. The difference between A-POC and A-FO is due
to an increase in the number of hypotheses considered. Indeed,
A-POC evaluates 1000 hypotheses but A-FO evaluates only 100
hypotheses because there is no communication between agents in
the full observability case.

Figure 5: After 20 steps, most hypotheses are discarded and the
updates become faster. A-FO (respectively A-POC) disambiguates
between 100 (respectively 1000) hypotheses.

7. CONCLUSIONS
The results presented in this paper show that an ad hoc agent can

integrate into a team without knowing in advance the task, its role,
and the communication protocol of the team. To our knowledge it is
the first time that these three aspects are considered simultaneously
in an ad hoc setting. Notably, we believe that this is the first paper
to address ambiguous communication protocols in ad hoc teams.
We used exact inference to infer in only a few iterations the correct
team configuration. As a result, the performance of the team was
barely impacted.

But considering that many hypotheses is costly, and the approach
presented in this paper is computationally expensive (see Figure 5).
An important challenge for the future is to find ways to approximate
this process while minimizing the impact on the performance of
the team. A potential avenue is to consider a sampling strategy,
evaluating only a subset of all possible domains each step.

Finally, our results show that the default team we built is not opti-
mal. Indeed an ad hoc agent, which is not always taking the action
the agent it replaces would have chosen, can on average achieve
similar performances. If the pre-coordinated team was optimal, we
would expect the performance of the ad hoc team to be “delayed”
– having the same slope but loosing some important steps in the
beginning. Therefore, it is likely that a more advanced planning
method for the ad hoc agent (see [3]) could improve the perfor-
mance of the default team.

Open Science
The code developed for this work is available online at https:
//github.com/jgrizou/adhoc_com.

Acknowledgments
Work partially supported by INRIA, Conseil Régional d’Aquitaine,
the ERC grant EXPLORERS 24007, and a INRIA Explorer fel-
lowship. A portion of this work has taken place in the Learn-
ing Agents Research Group (LARG) at the Artificial Intelligence
Laboratory, The University of Texas at Austin. LARG research
is supported in part by grants from the National Science Foun-
dation (CNS-1330072, CNS-1305287), ONR (21C184-01), AFRL
(FA8750-14-1-0070), and AFOSR (FA9550-14-1-0087).

REFERENCES
[1] N. Agmon and P. Stone. Leading ad hoc agents in joint

action settings with multiple teammates. In Proc. of 11th Int.
Conf. on Autonomous Agents and Multiagent Systems
(AAMAS), June 2012.

[2] S. Barrett, N. Agmon, N. Hazon, S. Kraus, and P. Stone.
Communicating with unknown teammates. In Proceedings of
the Twenty-First European Conference on Artificial
Intelligence, August 2014.

[3] S. Barrett, P. Stone, and S. Kraus. Empirical evaluation of ad
hoc teamwork in the pursuit domain. In The 10th
International Conference on Autonomous Agents and
Multiagent Systems-Volume 2, pages 567–574, 2011.

[4] S. Barrett, P. Stone, S. Kraus, and A. Rosenfeld. Teamwork
with limited knowledge of teammates. In Proceedings of the
Twenty-Seventh AAAI Conference on Artificial Intelligence,
July 2013.

[5] M. Benda, V. Jagannathan, and R. Dodhiawala. On optimal
cooperation of knowledge sources - an empirical
investigation. Technical Report BCS–G2010–28, Boeing

34

Advanced Technology Center, Boeing Computing Services,
Seattle, WA, USA, July 1986.

[6] M. Bowling and P. McCracken. Coordination and adaptation
in impromptu teams. In AAAI, volume 5, pages 53–58, 2005.

[7] D. Chakraborty and P. Stone. Cooperating with a Markovian
ad hoc teammate. In Proceedings of the 12th International
Conference on Autonomous Agents and Multiagent Systems
(AAMAS), May 2013.

[8] K. Genter, N. Agmon, and P. Stone. Role-based ad hoc
teamwork. In Proceedings of the Plan, Activity, and Intent
Recognition Workshop at the Twenty-Fifth Conference on
Artificial Intelligence (PAIR-11), August 2011.

[9] K. Genter, N. Agmon, and P. Stone. Ad hoc teamwork for
leading a flock. In Proceedings of the 12th International
Conference on Autonomous Agents and Multiagent Systems
(AAMAS 2013), May 2013.

[10] E. Gil Jones, B. Browning, M. B. Dias, B. Argall, M. Veloso,
and A. Stentz. Dynamically formed heterogeneous robot
teams performing tightly-coordinated tasks. In Robotics and
Automation, 2006. ICRA 2006. Proceedings 2006 IEEE
International Conference on, pages 570–575. IEEE, 2006.

[11] J. Grizou, I. Iturrate, L. Montesano, P.-Y. Oudeyer, and
M. Lopes. Interactive learning from unlabeled instructions.
In Proceedings of the Thirtieth Conference on Uncertainty in
Artificial Intelligence, 2014.

[12] J. Grizou, M. Lopes, and P.-Y. Oudeyer. Robot Learning
Simultaneously a Task and How to Interpret Human
Instructions. In Joint IEEE International Conference on
Development and Learning and on Epigenetic Robotics
(ICDL-EpiRob), Osaka, Japan, 2013.

[13] P. Stone, G. A. Kaminka, S. Kraus, J. R. Rosenschein, and
N. Agmon. Teaching and leading an ad hoc teammate:
Collaboration without pre-coordination. Artificial
Intelligence, 203:35–65, October 2013.

[14] P. Stone, G. A. Kaminka, S. Kraus, J. S. Rosenschein, et al.
Ad hoc autonomous agent teams: Collaboration without
pre-coordination. In AAAI, 2010.

[15] P. Stone and S. Kraus. To teach or not to teach?: decision
making under uncertainty in ad hoc teams. In Proceedings of
the 9th International Conference on Autonomous Agents and
Multiagent Systems: volume 1-Volume 1, pages 117–124.
International Foundation for Autonomous Agents and
Multiagent Systems, 2010.

[16] P. Stone and M. Veloso. Multiagent systems: A survey from
a machine learning perspective. Autonomous Robots,
8(3):345–383, 2000.

[17] R. Sutton and A. Barto. Reinforcement learning: An
introduction, volume 28. Cambridge Univ Press, 1998.

35

Half Field Offense: An Environment for Multiagent
Learning and Ad Hoc Teamwork

Matthew Hausknecht
University of Texas at Austin

mhauskn@cs.utexas.edu

Prannoy Mupparaju
IIT Bombay

m.prannoy@iitb.ac.in

Sandeep Subramanian
IIT Bombay

110260028@iitb.ac.in
Shivaram

Kalyanakrishnan
IIT Bombay

shivaram@cse.iitb.ac.in

Peter Stone
University of Texas at Austin
pstone@cs.utexas.edu

ABSTRACT
The RoboCup 2D simulation domain has served as a plat-
form for research in AI, machine learning, and multiagent
systems for more than two decades. However, for the re-
searcher looking to quickly prototype and evaluate different
algorithms, the full RoboCup task presents a cumbersome
prospect, as it can take several weeks to set up the desired
testing environment. The complexity owes in part to the co-
ordination of several agents, each with a multi-layered con-
trol hierarchy, and which must balance offensive and defen-
sive goals. This paper introduces a new open source bench-
mark, based on the Half Field Offense (HFO) subtask of soc-
cer, as an easy-to-use platform for experimentation. While
retaining the inherent challenges of soccer, the HFO environ-
ment constrains the agent’s attention to decision-making,
providing standardized interfaces for interacting with the
environment and with other agents, and standardized tools
for evaluating performance. The resulting testbed makes it
convenient to test algorithms for single and multiagent learn-
ing, ad hoc teamwork, and imitation learning. Along with
a detailed description of the HFO environment, we present
benchmark results for reinforcement learning agents on a
diverse set of HFO tasks. We also highlight several other
challenges that the HFO environment opens up for future
research.

Categories and Subject Descriptors
H.4 [Computing methodologies]: Multi-agent systems

General Terms
Algorithms, Measurement, Design

Keywords
Half Field Offense, RoboCup, Ad-Hoc Teamwork, Reinforce-
ment Learning

1. INTRODUCTION
For agents to act with greater autonomy, it is crucial that

they learn from their experience, which is often shared with
other agents. These other agents could themselves be co-
operative partners, adversaries, or teachers. It is no sur-
prise, then, that the quest to design autonomous agents has

Figure 1: 3v3 Half Field Offense: Yellow offense
agents search for an opening in the defensive for-
mation. Red defenders and purple keeper strive to
intercept the ball or force it out of bounds. HFO
is better understood by video than picture: 1v1
https://vid.me/sNev, 2v2 https://vid.me/JQTw, 3v3
https://vid.me/1b5D

spawned several fields of study to investigate these essen-
tial aspects of agent behavior. The field of reinforcement
learning [22] examines how agents in an unknown environ-
ment, through trial and error, can learn to take actions with
long-term benefit. Imitation learning [3] specifically con-
siders how the learning process can be sped up by harnessing
instructive advice from a teacher. Whereas the predominant
body of work under these topics focuses on the single-agent
setting, multiagent reinforcement learning [15, 24] has
taken shape as an active area of research in its own right.
Other topics of interest in a multiagent environment, such
as coordination [23] and ad hoc teamwork [20] have also
been actively pursued.

In each of the areas listed above, significant progress has
been made in establishing theoretical foundations and con-
ceptual frameworks. However, the validation of the resulting
algorithms has typically been in constrained settings that do
not possess the full complexity of the real world. For exam-
ple, reinforcement learning algorithms are most often tested
on toy problems such as Mountain Car and Acrobot, if not in
small, discrete, “grid world” environments [22], which have
also been used in several multiagent studies [11, 24]. Natu-
rally there are merits to testing an algorithm in a simplified
environment that does not include orthogonal or confound-
ing factors. On the other hand, such factors are bound to
present themselves when the algorithm is taken to the real
world. In fact, real-world applications may additionally de-
mand the integration of ideas from different fields of study,

36

thereby motivating the need for test environments that af-
ford such a possibility.

This paper accompanies the release of an environment for
benchmarking algorithms related to learning, multi-agency,
and teamwork. Our environment is built on top of the
RoboCup 2D simulation platform [1]. RoboCup [13] is an
international robot soccer competition that promotes re-
search in AI and robotics. Within RoboCup, the 2D sim-
ulation league works with an abstraction of soccer wherein
the players, the ball, and the field are all 2-dimensional ob-
jects. For nearly two decades now, 2D simulation soccer has
fostered active research and development. However, for the
researcher looking to quickly prototype and evaluate differ-
ent algorithms, the full soccer task presents a cumbersome
prospect: full games are lengthy, have high variance in their
outcome, and demand specialized handling of rules such as
free kicks and offsides.

Our objective is to expose the experimenter only to core
decision-making logic, and to focus on the most challeng-
ing part of a RoboCup 2D game: scoring and defending
goals. To this end, we introduce the Half Field Offense
(HFO) environment (Figure 1). As a machine learning task,
HFO features a diversity of challenges: in the simplest form,
HFO requires the development of a single controller for an
autonomous 2D soccer agent. This agent could be either
playing offense and seeking to score goals or playing defense
and acting to prevent goals. Beyond single-agents, HFO
supports multiple agents, some of which may be manually
controlled by the user and others that can be automatically
controlled. Thus HFO incorporates aspects of multiagent
learning and ad hoc teamwork [20]. HFO naturally lends it-
self to reinforcement learning due to the sequential nature of
the decisions made by the agents. The environment involves
a continuous state space, and provides a choice between con-
tinuous and discrete action spaces.

Indeed HFO was originally introduced by Kalyanakrish-
nan et al. [12] almost a decade ago, but the authors did
not release code for their framework. Barrett and Stone [6]
recently reported some experiments on an independently-
developed code base for HFO, which again was not released
publicly. Thus HFO has remained inaccessible to many po-
tential users.

Among publicly-released benchmarks for multiagent RL,
the closest in spirit to HFO is Keepaway [21], which models
the task of ball possession in soccer. Note that possession
is only one of the many skills an HFO team must master,
in addition to moving towards the goal and shooting. Also,
while intermediate rewards are natural to define in Keep-
away, credit is only available at the end of an episode in
HFO. These reasons make Keepaway an easier task for learn-
ing than HFO [12]. Our public release of HFO also shares
the same motivations as the recently-released Arcade Learn-
ing Environment [7], which provides easy access to a large
number of console games. However, these games are all in
the single-agent setting.

Our open-source release of the HFO environment brings
several convenient features, as listed below.1

• Standard, MDP-like interface to RoboCup server.

• Access to high and low-level state spaces.

• Access to high and low-level action spaces.

• Support for automated teammates and opponents.
1Repository hosted at https://github.com/LARG/HFO.

• Ability to play offense or defense.

• Facilities for inter-agent communication.

• Setup to perform reproducible experiments.

• Tools for performance evaluation and analysis.

The remainder of this paper is organized as follows. Sec-
tion 2 presents the Half Field Offense environment in detail.
Section 3 provides an overview of different agents that we
have benchmarked in this environment, and Section 4 re-
ports the corresponding benchmark results. In Section 5,
we outline some of the challenges that the HFO environ-
ment opens up to future research. Section 6 discusses related
work, and Section 7 serves as the conclusion.

2. HALF FIELD OFFENSE
Competition RoboCup 2D soccer is played between two

teams of autonomous agents who communicate with a cen-
tral soccer server. The HFO Environment (Figure 2) builds
upon the competition-ready RoboCup 2D server, but sup-
ports smaller teams consisting of arbitrary mixes of auto-
mated teammates (NPCs, for “non player characters”) and
player-controlled agents - up to ten players per side.

Soccer Server
Offense
NPCs

Agent2d
Agent2d
Agent2d
Agent2d
Agent2d

Agent2d

Agent
Server

Trainer.py

HFO
Interface

Visualizer
Agent2d
Agent2d
Agent2d
Agent2d

Agent2d
Agent2d

Agent
Server

HFO
Interface

Your
Code

Defense
NPCs

Offense
Agent Your

Code

Defense
Agent

HFO

Figure 2: The HFO Environment is comprised of
many separate processes which communicate over
the network with the RoboCup 2D soccer server.
HFO starts these processes, ensures they communi-
cate, and oversees the games. A user needs only to
specify the number of offensive and defensive agents
and NPCs and then connect their agent(s) to the
waiting Agent Server(s) via the HFO interface.

Because the official RoboCup 2D soccer server lies at the
core of the HFO Environment, we expect agents or skills
learned in HFO will translate with relatively little effort
into competition RoboCup soccer. Additionally, cutting-
edge RoboCup competition-winning agents can be ported
into HFO as NPCs. Currently, HFO supports one type of
teammate—Helios-Agent 2D—but standard communication
interfaces allow others to be integrated easily. The next sec-
tion discusses the state and action spaces provided by the
HFO Environment.

2.1 State Representation
Agents interfacing with the HFO domain choose between

a low or high level state representation. This choice of rep-
resentation affects the difficulty of the HFO task. The low-
level representation provides more features with less pre-
processing, while the high-level representation provides fewer,
more informative features. For example, the high-level rep-
resentation provides a feature for the largest open goal angle
(Figure 3), computed by comparing the keeper’s position to

37

the positions of the goal posts. In contrast, the low-level
representation provides angles to the goal posts and angles
to each of the opponents, but determining which opponent
is the keeper and calculating open goal angles is left to the
player. We now describe these representations in more de-
tail.

θp

θg

Figure 3: High-level state representation computes
the orange agent’s largest open goal angle θg as well
as open pass angle to a teammate θp.

2.2 Low-Level State Representation
HFO defines a low-level egocentric viewpoint encoded us-

ing 58 continuously-valued features (8 additional features
are added for each teammate and opponents). These fea-
tures are derived through Helios’ [2] world model and pro-
vide angles and distances to various on-field objects of im-
portance such as the ball, the goal, and the other players.
The most relevant features include the agent’s position, ve-
locity, orientation, and stamina; indicator if the agent can
kick; angles and distances to the ball, goal, corners of the
field; teammates and opponents positions, angles, velocities
and orientations. These features are intended to be used by
a learning algorithm that can handle raw perceptions.

2.3 High-Level State Representation
The high-level feature space is a compact representation

enabling an agent to learn quickly by generalizing its knowl-
edge about similar states. There are a minimum of 9 contin-
uous features with an additional 5 for each teammate. Fea-
tures include: agent’s position and orientation; distance and
angle to the ball; indicator if the agent can kick; distance
and angle to the goal; largest open goal angle (θg in Fig-
ure 3); teammates distance, angle, uniform number, largest
open goal angle and nearest opponent distance; open pass
angle to each teammate (θp in Figure 3). This feature set
is inspired by Barrett et al.’s exploration of HFO [5]. These
high-level features allow a learning agent to quickly improve
HFO performance.

2.4 Action Representation
The action space of a domain is one component of the

complexity of the learning problem. HFO provides a choice
between two action spaces - one high-level and discrete, the
other low-level and continuous.

2.5 Low-Level Action Representation
HFO uses a parameterized low-level action space in which

an agent is first faced with a decision about which type of
action to select, and then how to execute that action. For-
mally characterized as a Parameterized Action Markov Deci-
sion Process (PAMDP) [17], HFO’s low-level, parameterized
action space features four mutually-exclusive action primi-
tives: Dash, Turn, Tackle, and Kick. Each action has up

to two continuous parameters which must also be specified.
An agent must select both the discrete action it wishes to
execute as well as the accompanying continuous parameters:

Dash(power, direction): Moves the agent in the indicated
direction with requested speed. Movement is faster forward
than sideways or backwards.
Turn(direction): Turns the agent in the indicated direction.
Tackle(direction): Slide tackles in the indicated direction.
Kick(power, direction): Kicks the ball in the indicated di-
rection with requested power.

This low-level action space presents a challenge to learning
algorithms. An agent acting randomly in the low-level state
space will wander near its starting position, and is highly
unlikely to approach the ball or score a goal.

2.6 High-Level Action Representation
HFO’s high-level action space defines a compact interface

to the Helios agent’s soccer behaviors. Each high-level be-
havior is ultimately composed of low-level actions, but also
incorporates Helios’ strategy for choosing and parameter-
izing the low-level actions. HFO supports five high-level
actions:

Move(): Moves the agent according to Helios’ strategy.
Shoot(): Takes the best available shot.
Pass(uniform num): Passes to the teammate with the re-
quested uniform number.
Dribble(): Advances the ball towards the goal using a com-
bination of short kicks and moves.
Catch(): Goalie-specific action to capture the ball.

While Shoot, Pass, and Dribble are the choices avail-
able to an offense player, Move and Catch apply to defense
players. Agents may also choose to do nothing by selecting a
NO-OP action. Using this action space, an offensive agent
that randomly select actions is capable of scoring goals as
long as no keeper is present.

2.7 Automated Teammates (NPCs)
Automated teammates and opponents in HFO use a policy

derived from Helios, the 2012 RoboCup 2D champion team
[2]. This policy is designed for full 11-versus-11 matches,
but gracefully scales to any of the smaller tasks in the HFO
umbrella. As our benchmark results indicate, automated
teammates and opponents using the Helios policy exhibit
strong but not perfect policies. More importantly, Helios
teammates favor cooperation and will strategically pass the
ball to player-controlled agents. While some passes are di-
rect, lead passes require the player-agent to quickly reposi-
tion in order to receive. When the player has the ball, Helios
teammates intelligently position themselves and will sprint
to receive a pass from the player.

2.8 Evaluation Metrics
Having presented the basic state spaces, action spaces,

and NPCs featured in the HFO Environment, we now ad-
dress the important question of how to evaluate the perfor-
mance of HFO agents.

The HFO environment does not provide reward signals
and instead indicates the ending status of the game. HFO
episodes end with one of the following termination condi-
tions:

Goal: The offense scored a goal.
Captured (CAP): The defense gained control of the ball.

38

Out of Bounds (OOB): The ball left the playfield.
Out of Time (OOT): No agent has approached the ball
in the last 100 timesteps.

Using these termination conditions, we propose two eval-
uation metrics: Goal Percentage and Time to Goal. The
primary focus of learning in HFO is to score goals when
playing offense and prevent goals from being scored when
playing defense. The primary metric, Goal Percentage,
the percentage of all trials that end with a goal being scored,
captures exactly this notion. The hallmark of an effective
offensive agent is a high goal percentage. A second metric,
Time to Goal (TTG), is defined as the number of timesteps
required to score in each trial that culminates with a goal.
Efficient offensive agents typically seek to minimize time to
goal, while defenders strive to maximize this metric.

Finally, the HFO environment also indicates the last player
to touch the ball. This information may be used to keep
track of offensive passes and define alternative reward func-
tions.

2.9 Learning Paradigms
The HFO Environment supports several learning paradigms:

Single-Agent Learning, involves a lone offensive or defen-
sive agent playing against one or many opponents. In Ad
Hoc Teamwork, the agent must learn to cooperate with
one or more unknown teammates without pre-coordinated
strategies [5, 20]. In the case of HFO, learning agents have
the opportunity to act as the ad hoc teammate of the Helios
agents. Finally, Multiagent Learning places two or more
learning agents on the same team with the shared objective
of scoring or defending the goal. Known as Multiagent Rein-
forcement Learning (MARL), the challenge for these agents
is to learn both individual competency as well as coopera-
tion [24]. While not examined in this paper, HFO also sup-
ports configurations that blend these learning paradigms.
For example, a team could consist of several learning agents
paired with one or more Helios teammates, mixing multia-
gent learning with ad hoc teamwork. Additionally, HFO can
create multiagent scenarios in which agents have competing
objectives, for example by allocating some learning agents
to play offense and others to play defense.

Having addressed the basic features of HFO, we now present
benchmark agents designed for single-agent and multiagent
learning, ad hoc teamwork.

3. BENCHMARK AGENTS
The HFO Environment makes it convenient to develop

and deploy agents in different learning scenarios. Agent in-
terfaces are provided for C++ and Python. Most benchmark
agents are powered by reliable, well-understood learning al-
gorithms that have withstood the test of time. We consider
the following agents:

3.1 Random Agent
The low-level random agent randomly selects actions

in the low-level action space and generates random contin-
uous parameters to accompany these actions. Observed be-
havior is Brownian motion around the agent’s starting po-
sition. This agent is excluded from the results as it never
manages to score a goal or approach the ball.

In contrast the high-level random agent randomly se-
lects actions in the discrete high-level action space. Ob-

served behavior is erratic but eventually manages to score
goals. Both agents serve as a lower bound for performance.

3.2 Hand-coded Agent
We designed a hand-coded agent that uses the high-level

state action space described above. Its offensive policy, used
both for scoring on an empty goal and for scoring on a
keeper, first checks if the agent has the ball. If it does, and
the distance to goal is less than α and the goal open angle is
greater than β, the agent will Shoot; otherwise it will Drib-
ble. If the agent does not have possession of the ball, it will
take the Move action. This policy ensures the agent is close
enough to the goal and has enough of an opening to put a
shot through. Both α and β are optimized using the Co-
variance Matrix Adaptation Evolution Strategy (CMA-ES)
[10].

A major difference between single agent learning and ad
hoc teamwork is the availability of a teammate to pass and
coordinate with. We modify the hand-coded policy to ac-
commodate the Ad Hoc scenario by utilizing teammate-
aware features: Now, when the agent has the ball, if it does
not have an open shot on the goal (e.g. open goal angle < β),
it will evaluate the positions of teammates, taking into con-
sideration the size of their open-goal-angles, their proximity
to opponents, and their ability to receive a pass. If mul-
tiple teammates satisfy these criteria, the ball is passed to
the teammate with the largest open-goal-angle. As before,
α and β are optimized using CMA-ES.

3.3 SARSA Agent
State-Action-Reward-State-Action (SARSA) is an algo-

rithm for model-free on-policy Reinforcement Learning [22].
To train this agent, we model Half Field Offense as an episodic
MDP in which a reward of +1 is given to the SARSA offen-
sive agent for scoring a goal, −1 for the defense capturing
the ball (or OOB/OOT), and 0 for all other timesteps. We
use four high-level state features to train the agent: distance
to goal, angle to goal, open goal angle, and distance to near-
est opponent (if present). Because these state features are
continuous, tile coding [22] is used to discretize the state
space. Experiences collected by playing the game are then
used to bootstrap a value function.

Similar to single agent learning, ad hoc teamwork can also
be modeled as a reinforcement learning problem. The only
change is in the features used. The rewards, actions, and
states remain the same. Along with the four features used
in single-agent SARSA, we now accommodate passing by
using additional features, viz. each teammate’s open goal
angle, distance to nearest opponent, pass opening angle, and
distance from our agent. Tile-coding is used to discretize this
larger, augmented state space. SARSA updates are applied
only when an episode terminates or the SARSA-agent is in
possession of the ball.

4. HFO BENCHMARK RESULTS
One of the main contributions of this paper, in addition

to the benchmark domain itself, is a set of initial results
against which future users of the domain can benchmark
their agents. Table 1 presents benchmark results for single-
agent learning, multiagent learning, and ad hoc teamwork
scenarios. Each of the presented results is averaged over
1000 evaluation episodes. Additionally, learning agent re-

39

Random Hand-coded SARSA
Scenario Difficulty Helios High-Lv High-Lv High-Lv

S
in

g
le

Offense (1v0) Easy 96.2 (72) 41.0 (186.6) 95.6 (48.9) 91.1 (61.3)
Offense (1v1) Medium 73.8 (79.1) 1.8 (242.7) 64.7 (68.7) 88.9 (85.3)
Offense (1v2) Hard 34.1 (103.9) .1 (206) 39.7 (71.6) 40.4 (93.5)
Defense (1v1) Medium 73.8 (79.1) 96.7 (73) 84.1 (54.9) 94.7 (73.5)
Defense (2v1) Hard 81.4 (73.1) 96.9 (68.1) 84.8 (53.0) 94.1 (68.3)

A
d

H
o
c

Offense (1+1v1) Easy – 66.3 (93.7) 68.5 (59.9) 91.5 (77.3)
Offense (1+1 v 2) Medium – 24.3 (105.6) 46.4 (72) 63.6 (92.4)
Offense (1+2 v 3) Medium – 22.3 (103.2) 27.6 (76.4) 34.5 (105)
Defense (1 v 1+1) Easy – 49.6 (87.5) 46.9 (65.4) 46.3 (86.2)
Defense (2 v 1+1) Medium – 72.7 (76.3) 60.1 (58.6) 64.7 (75.5)
Defense (3 v 2+1) Medium – 58.4 (75.4) 43.0 (58) 49.6 (74.5)

M
u
lt

ia
g
en

t

Offense (2v1) Easy 81.4 (73.1) .7 (361.7) 65.7 (66.1) 92.3 (84.2)
Offense (2v2) Medium 60.0 (87.9) 0 (–) 46.7 (73.7) 62.8 (93.8)
Offense (3v3) Medium 38.8 (93.2) 0 (–) 25.7 (84.1) 33.1 (107.6)
Defense (1v2) Easy 34.1 (103.9) 89.2 (83.1) 52.1 (62.9) 65.9 (80.7)
Defense (2v2) Medium 60.0 (87.9) 91.0 (70.3) 60.5 (55.8) 77.2 (71.4)
Defense (3v3) Medium 38.8 (93.2) 86.7 (66.5) 50.2 (56.4) 69.2 (70.3)

Table 1: HFO Benchmark Results: Each cell displays the percentage of episodes that ended with a goal (Goal
Percentage) and, in parenthesis, the average number of simulated timesteps required to score a goal (Time
to Goal). Examined offensive and defensive scenarios span Single-agent learning, Ad Hoc Teamwork, and
Multiagent learning. Baseline results for the automated Helios teammate are omitted for Ad Hoc Teamwork,
as they are identical to the Multiagent scenario. In the Scenario column, bold font indicates learning agents.
Everywhere else, it identifies the agent with the best performance in that scenario.

sults (Hand-coded and SARSA) are averages over ten in-
dependent training runs. The benchmark agents are open-
source and publicly available as a part of the HFO reposi-
tory, enabling the results in Table 1 to be easily reproduced.
Results from each of the different learning paradigms are
discussed in greater detail below.

4.1 Single-Agent Learning
We examine three single agent HFO tasks: Scoring on an

empty goal, Scoring on a keeper, and Protecting the goal.
Even against an empty goal none of the agents scores every
time. This is because the RoboCup 2D simulator adds noise
to the perceptions and actions taken by the agents, resulting
in occasionally missed shots. Once a keeper is added, the
scoring percentage of all offensive agents drops drastically for
all agents except SARSA. Likewise, the average number of
steps required to score a goal increases by 22, indicating the
sharp difficulty increase between these two tasks. However,
it is no easier to play Keeper. As the results indicate, an
offensive Helios-agent is just as effective scoring on an empty
goal as it is against the random agent.

4.2 Ad Hoc Teamwork
Ad Hoc teamwork scenarios require the learning agent to

cooperate with a Helios-controlled teammate without the
benefit of pre-coordination. Playing with the Helios team-
mate, the random agent receives a substantial boost of 24.7
goal percentage points (GPPs) on offense and deters 28.7
more GPPs when on defense. On the other hand, learning
agents have more trouble adapting their play styles to the
unknown teammate. As a result, Hand-coded and SARSA
agents experience less improvement, as discussed in the next
section.

4.3 Multiagent Learning
Multiagent learning involves multiple agents learning in

each others’ presence. A learning teammate presents an op-
portunity for improved performance since the two agents’
strategies can co-adapt. However, a non-stationary team-
mate policy can also be a liability if a new behavior violates
existing cooperative strategies.

In order to analyze the quality of Helios versus learning
teammates, we examine differences between the Ad Hoc and
multiagent scenarios: The Hand-coded agent shows a slight
performance increase when paired with a Helios teammate
instead of a Hand-coded teammate: an average improvement
of 1.5 GPPs on offense and 4.3 GPPs on defense. When
paired with Helios, SARSA’s goal percentage increases by
only .5 GPPs on offense and a substantial 17.2 GPP reduc-
tion on defense. These trends suggests that for SARSA and
Hand-coded agents, having a highly competent teammate is
more valuable than a learning teammate.

4.4 Analysis
Due to the many different scenarios supported by the HFO

environment, it is desirable to quantify and compare the
aggregate performance of different agents. To accomplish
this task we recommend a one-way Analysis of Variance
(ANOVA) test. Shown in Figure 4, this test shows the ag-
gregate offensive and defensive capabilities of the learning
agents as well as the Helios expert. On offense, a clear hier-
archy emerges with SARSA learning agents outperforming
Hand-coded agents, who in turn perform better than the
random agent. On defense, the order is different, with He-
lios and Hand-coded agents preventing goals more effectively
than SARSA and random agents.

Overall, the high performance of the Helios policy indi-
cates that expert hand-coded approaches are very strong.

40

We expect that future learning agents will be able to out-
perform Helios agents, perhaps by learning better skills in
the low-level action space.

Random Handcoded Sarsa Helios
0

20

40

60

80

100

G
oa

l P
er

ce
nt

ag
e

Offense
Defense

Figure 4: One-way Analysis of Variance (ANOVA)
shows aggregate offensive (hollow) and defensive
(filled) capabilities of each agent across all scenar-
ios examined in Table 1: Offensively, Hand-coded,
Sarsa, and Helios agents statistically significantly
outperform the random agent (p < .01). On defense,
Helios is signficiantly better than random and Sarsa
agents (p < .01), but not significantly better than
hand-coded.

5. OPEN CHALLENGES
The HFO Environment includes tasks that range in diffi-

culty from easy to hard. Easy tasks feature favorable condi-
tions for the learning agents - conditions such as teammates
outnumbering opponents. Additionally, we outline several
hard learning problems in which the opponents outnumber
teammates. Two single-agent examples are 1) playing of-
fense against two defenders and 2) playing keeper against
two attackers. Both of these scenarios are yet unsolved by
the current algorithms and offer much room for improve-
ment. Using the HFO Environment it is trivial to create
even harder scenarios where the odds are further stacked
against the learning agent. Addressing such scenarios may
be a key to discovering new strategies for competitive RoboCup
agents.

A second open challenge is learning in the low-level state
action space. Learning in this space is complicated by the
necessity of dealing with continuous actions, and the low-
level random agent demonstrates that acting randomly is
insufficient to score even a single goal. However, acting in
this space offers the most fine-grained control over agent’s
behavior and may be the key to discovering novel skills and
strategies.

A final challenge is to use the inter-agent communica-
tion facilities provided by HFO to aid in coordinated tasks.
The existing benchmark agents learn to cooperate without
communication, but could plausibly benefit from learning to
communicate as they learn to perform the cooperative task
of scoring or defending goals.

We hope these challenges will spark interest in the com-
munity as much as they do in the authors. We now examine
related work and conclude.

6. RELATED WORK
Progress in machine learning is driven both by the de-

velopment of new algorithms and the availability of high-
quality, publicly-accessible training data. Examples of highly
influential supervised and unsupervised datasets include Fisher’s
seminal Iris dataset [9], the UCI Machine Learning reposi-
tory [4], the Penn Treebank [16], MNIST handwritten digit
recognition [14], ImageNet large scale visual recognition chal-
lenge [18], and Pascal Visual Object Classes [8].

Instead of datasets, reinforcement learning is driven by
challenging domains. Examples of influential domains in-
clude classics like grid-world, mountain-car, and cart-pole
[22], as well as more recent additions such as octopus-arm,
Tetris and Pac-Man. Reinforcement learning competitions
[27] featuring these domains drive development of new algo-
rithms and agents.

One of the main inspirations for this paper is the Arcade
Learning Environment [7], which has helped advance the
field of AI by providing a testbed and evaluation method-
ology for general game playing algorithms. The HFO envi-
ronment provides a similar platform, with less emphasis on
generality and more emphasis on cooperation and multia-
gent learning.

7. CONCLUSION
It has been ten years since Stone et al. presented the

RoboCup 2D Keepaway domain [21]. Keepaway created in-
terest, sparked research, and has served for many years as a
testbed for new AI algorithms [19, 25, 26]. The HFO envi-
ronment is similar in spirit, but features an expanded range
of tasks spanning a spectrum of difficulty levels. A high-level
discrete action space allows agents to learn quickly by har-
nessing the same behaviors as the expert Helios agent, while
a low-level continuous state action space enables researchers
to investigate cutting-edge techniques for reinforcement learn-
ing in parameterized-continuous spaces featuring partial ob-
servability and opportunities for multiagent coordination.

More than just state and actions spaces, the HFO En-
vironment features the capability to explore single agent
learning, Ad Hoc teamwork, Multiagent learning, and imita-
tion learning. In this paper, we presented benchmark results
demonstrating the capabilities of reinforcement learning and
hand-coded agents in each of these tasks. Furthermore, we
presented an evaluation methodology and strategy for quan-
tifying aggregate agent performance and identified several
open research challenges. Using these techniques, we expect
the community will be able to quickly develop, interface,
and evaluate novel agents that will advance the state of the
art in multiagent learning and ad hoc teamwork.

Acknowledgments
This work has taken place in the Learning Agents Research
Group (LARG) at the Artificial Intelligence Laboratory, The
University of Texas at Austin. LARG research is supported
in part by grants from the National Science Foundation
(CNS-1330072, CNS-1305287), ONR (21C184-01), AFRL
(FA8750-14-1-0070), AFOSR (FA9550-14-1-0087), and Yu-
jin Robot.

41

REFERENCES
[1] The robocup soccer simulator.

http://sourceforge.net/projects/sserver/.
Accessed: 2016-02-01.

[2] Hidehisa Akiyama. Agent2d base code.
https://osdn.jp/projects/rctools/, 2010.

[3] Brenna Argall, Sonia Chernova, Manuela M. Veloso,
and Brett Browning. A survey of robot learning from
demonstration. Robotics and Autonomous Systems,
57(5):469–483, 2009.

[4] Arthur Asuncion and David J Newman. Uci machine
learning repository.
http://archive.ics.uci.edu/ml/, 2007.

[5] Samuel Barrett. Making Friends on the Fly: Advances
in Ad Hoc Teamwork. PhD thesis, The University of
Texas at Austin, Austin, Texas, USA, December 2014.

[6] Samuel Barrett and Peter Stone. Cooperating with
unknown teammates in complex domains: A robot
soccer case study of ad hoc teamwork. In Proceedings
of the Twenty-Ninth AAAI Conference on Artificial
Intelligence, pages 2010–2016, January 2015.

[7] Marc G. Bellemare, Yavar Naddaf, Joel Veness, and
Michael Bowling. The arcade learning environment:
An evaluation platform for general agents. Journal of
Artificial Intelligence Research, 47:253–279, 2013.

[8] Mark Everingham, Luc Gool, Christopher K.
Williams, John Winn, and Andrew Zisserman. The
pascal visual object classes (voc) challenge. Int. J.
Comput. Vision, 88(2):303–338, June 2010.

[9] R. A. Fisher. The use of multiple measurements in
taxonomic problems. Annals of Eugenics,
7(7):179–188, 1936.

[10] Nikolaus Hansen. The cma evolution strategy: A
comparing review. In Towards a New Evolutionary
Computation, volume 192 of Studies in Fuzziness and
Soft Computing, pages 75–102. Springer Berlin
Heidelberg, 2006.

[11] Junling Hu and Michael P. Wellman. Nash q-learning
for general-sum stochastic games. Journal of Machine
Learning Research, 4:1039–1069, 2003.

[12] Shivaram Kalyanakrishnan, Yaxin Liu, and Peter
Stone. Half field offense in robocup soccer: A
multiagent reinforcement learning case study. In
Gerhard Lakemeyer, Elizabeth Sklar, Domenico G.
Sorrenti, and Tomoichi Takahashi, editors, RoboCup,
volume 4434 of Lecture Notes in Computer Science,
pages 72–85. Springer, 2006.

[13] Hiroaki Kitano, Minoru Asada, Yasuo Kuniyoshi,
Itsuki Noda, and Eiichi Osawa. Robocup: The robot
world cup initiative. In Agents, pages 340–347, 1997.

[14] Yann LeCun and Corinna Cortes. MNIST
handwritten digit database.
http://yann.lecun.com/exdb/mnist/, 2010.

[15] Michael L. Littman. Markov games as a framework for
multi-agent reinforcement learning. In Machine
Learning, Proceedings of the Eleventh International
Conference, Rutgers University, New Brunswick, NJ,
USA, July 10-13, 1994, pages 157–163. Morgan
Kaufmann, 1994.

[16] Mitchell P. Marcus, Mary Ann Marcinkiewicz, and
Beatrice Santorini. Building a large annotated corpus

of english: The penn treebank. Comput. Linguist.,
19(2):313–330, June 1993.

[17] Warwick Masson and George Konidaris.
Reinforcement learning with parameterized actions.
CoRR, abs/1509.01644, 2015.

[18] Olga Russakovsky, Jia Deng, Hao Su, Jonathan
Krause, Sanjeev Satheesh, Sean Ma, Zhiheng Huang,
Andrej Karpathy, Aditya Khosla, Michael Bernstein,
Alexander C. Berg, and Li Fei-Fei. ImageNet Large
Scale Visual Recognition Challenge. International
Journal of Computer Vision (IJCV), 115(3):211–252,
2015.

[19] Vishal Soni and Satinder Singh. Using
homomorphisms to transfer options across continuous
reinforcement learning domains. In AAAI, volume 6,
pages 494–499, 2006.

[20] Peter Stone, Gal A. Kaminka, Sarit Kraus, and
Jeffrey S. Rosenschein. Ad hoc autonomous agent
teams: Collaboration without pre-coordination. In
Proceedings of the Twenty-Fourth Conference on
Artificial Intelligence, July 2010.

[21] Peter Stone, Richard S. Sutton, and Gregory
Kuhlmann. Reinforcement learning for robocup soccer
keepaway. Adaptive Behaviour, 13(3):165–188, 2005.

[22] Richard S. Sutton and Andrew G. Barto.
Reinforcement Learning: An Introduction. MIT Press,
1998.

[23] Milind Tambe. Towards flexible teamwork. Journal of
Artificial Intelligence Research, 7:83–124, 1997.

[24] Ming Tan. Multi-agent reinforcement learning:
Independent vs. cooperative agents. In Michael N.
Huhns and Munindar P. Singh, editors, Readings in
Agents, pages 487–494. Morgan Kaufmann Publishers
Inc., San Francisco, CA, USA, 1998.

[25] Matthew E Taylor, Peter Stone, and Yaxin Liu.
Transfer learning via inter-task mappings for temporal
difference learning. Journal of Machine Learning
Research, 8(1):2125–2167, 2007.

[26] Phillip Verbancsics and Kenneth O Stanley. Evolving
static representations for task transfer. The Journal of
Machine Learning Research, 11:1737–1769, 2010.

[27] Shimon Whiteson, Brian Tanner, and Adam White.
The reinforcement learning competitions. AI
Magazine, 31(2):81–94, 2010.

42

Deep Imitation Learning for Parameterized Action Spaces

Matthew Hausknecht
Department of Computer

Science
University of Texas at Austin

mhauskn@cs.utexas.edu

Yilun Chen
Department of Automation

Tsinghua University
cyl12@tsinghua.edu.cn

Peter Stone
Department of Computer

Science
University of Texas at Austin
pstone@cs.utexas.edu

ABSTRACT
Recent results have demonstrated the ability of deep neu-
ral networks to serve as effective controllers (or function
approximators of the value function) for complex sequen-
tial decision-making tasks, including those with raw visual
inputs. However, to the best of our knowledge, such demon-
strations have been limited to tasks either fully discrete or
fully continuous actions. This paper introduces an imitation
learning method to train a deep neural network to mimic a
stochastic policy in a parameterized action space. The net-
work uses a novel dual classification/regression loss mech-
anism to decide which discrete action to select as well as
the continuous parameters to accompany that action. This
method is fully implemented and tested in a subtask of sim-
ulated RoboCup soccer. To the best of our knowledge, the
resulting networks represent the first demonstration of suc-
cessful imitation learning in a task with parameterized con-
tinuous actions.

Categories and Subject Descriptors
I.2 [Artificial Intelligence]: Learning

General Terms
Connectionism and neural nets

Keywords
Half Field Offense, RoboCup, Imitation Learning

1. INTRODUCTION
Sequential decision making in continuous action spaces

has historically proven to be a challenge. One existing way
to circumvent the problem of learning in high dimensional
spaces is to mimic the actions of a teacher. Known as learn-
ing from demonstration, imitation learning, or apprentice-
ship learning, this family of methods is typically used on
challenging robotic domains in which learning tabula rasa is
not feasible [4, 5].

Meanwhile, recent results have demonstrated the ability
of deep neural networks to serve as effective controllers (or
function approximators of the value function) for complex
sequential decision-making tasks [18, 15], including those
with raw visual inputs. However, to the best of our knowl-
edge, such demonstrations have been limited to tasks with
either fully discrete or fully continuous actions.

This paper synthesizes these two lines of research by intro-
ducing an imitation learning method to train a deep neural

network to mimic a stochastic policy in a domain with high-
dimensional input and a parameterized continuous action
space. The network uses a novel dual classification/regression
loss mechanism to decide which discrete action to select as
well as the continuous parameters to accompany that action.

This deep imitation learning method is fully implemented
and tested in a subtask of RoboCup simulated soccer, which
features a parameterized action space in which the agent
must first select the type of action to perform from a dis-
crete list of high level actions and then specify the contin-
uous parameters to accompany that action. To the best of
our knowledge, no past research has successfully leveraged
teacher policies using imitation learning in a domain with
such high dimensional inputs and continuous actions.

Successful imitation learning requires a good choice of pol-
icy representation for the learner. We choose deep neural
networks to represent learned policies because of their power
as general function approximators, their ability to general-
ize beyond the states and actions observed during training,
and the ability to easily increase the complexity of the net-
work by adding nodes or layers. Indeed, after learning in
our testbed domain, the networks prove capable of select-
ing effective sequences of actions required to locate the ball,
dribble, and score.

The main contributions of this paper are: 1) it demon-
strates for the first time the possibility of learning a task
with parameterized continuous actions through imitation
learning of a stochastic policy; 2) it contributes a mimic net-
work topology and training methodology that enables learn-
ing of such a task; 3) and it reports on a detailed case study
showing the success of this network on a complex task and
analyzing the critical factors that enable this success.

The remainder of this paper is organized as follows: the
next two sections present related work and introduce the
Half Field Offense domain. Next the architecture of the deep
neural network and training procedure used for mimicking
is discussed. Experiments and results are then presented,
followed by discussion and conclusions.

2. RELATED WORK
There are three areas of closely related work: parameter-

ized action space learning, imitation learning, and RoboCup
soccer learning.

Masson and Konidaris [17] present a parameterized-action
MDP formulation and approaches for model-free reinforce-
ment learning in such environments. Applied to a simpli-
fied abstraction of simulated RoboCup soccer, the resulting
agents operate over a parameterized action space and can

43

score on a fixed-policy goalie. There are three main differ-
ences from our work: first, Masson and Konidaris start each
episode by co-locating the agent and ball. In our paper, tri-
als start by randomly positioning both the agent and the
ball. Thus our agent’s policy must be able to locate and ap-
proach the ball, as in a real game of soccer. Second, Masson
and Konidaris use a higher-level action space consisting only
of parameterized kick, shoot-left-of-goalie, and shoot-right-
of-goalie actions. Their agent automatically moves towards
the ball and only needs to learn where to kick. In contrast,
our agent must learn to follow the ball while dribbling and
must decide how and where to shoot on goal without the
benefit of actions to shoot left or right of the goalie. Finally,
we use a higher-dimensional state space consisting of 58 con-
tinuous features as opposed to the 14 used by Masson and
Konidaris.

Also in parameterized action space, Hausknecht and Stone
[12] applied actor-critic deep reinforcement learning to the
problem of learning, from scratch, complete policies for goal
scoring. Their work represents a related but different ap-
proach towards learning, one which does not rely on a tra-
jectories from a teacher.

Approaches to learning in parameterized action spaces
other than robot soccer include: Guestrin et al. [9] factor the
parameterized action space using a dynamic Bayesian net-
work before attempting to compute an approximate value
function. Sanner and Vianna [23, 25] use symbolic dynamic
programming to solve the continuous portions of the param-
eterized MDPs. In contrast our work harnesses the function
approximation power of deep neural networks, which have
proven effective for learning control policies in reinforcement
learning domains [18]. As our experiments demonstrate,
without the depth of modern neural networks and rectified
linear activation functions (ReLU), imitation learning would
not be possible on this domain.

Imitation learning has been applied effectively in a wide
variety of domains [7, 1, 24, 4, 20, 6, 22]. None of the
examined domains have parameterized action spaces or use
deep neural networks to represent the learned policy.

Recently, Guo et al. used deep neural networks to mimic
sequential decision making policies in Atari games [10]. In
this case, the policy to mimic comes from a Monte-Carlo
Tree Search planner and features a discrete action space
which allows the deep network to learn using the standard
cross-entropy loss (the typical loss function for 1-of-n clas-
sification tasks). Likewise, Lillicrap demonstrates deep neu-
ral networks learning in continuous action spaces [15]. In
contrast, the HFO task examined in this paper requires an
entirely different approach due to its parameterized action
space.

Parisotto et al. [19] describe a method for training a
Actor-Mimic network: a network that imitates a Deep Q
Network using policy regression to emulate the teacher’s pol-
icy and feature regression to mimick the teacher’s features.
A single Actor-Mimic network is able to learn from several
DQN teacher networks and achieve high scores across a set
of different Atari games. Additionally, using Actor-Mimic
multitask pretraining is shown to increase learning speed
on a target task. Our approach differs by learning in pa-
rameterized space from teachers whose policies are not deep
networks.

RoboCup 2D soccer has a rich history of learning. In one
of the earliest examples, Andre used Genetic Programming

to evolve policies for RoboCup 2D Soccer [3]. By using a se-
quence of reward functions, they first encourage the players
to approach the ball, kick the ball, score a goal, and finally
to win the game. Similarly, our work features players whose
policies are entirely trained and have no hand-coded compo-
nents. Our work differs by using a gradient-based learning
method and learning from demonstration rather than a re-
ward signal.

Competitive RoboCup agents are primarily hand-coded
but may feature components that are learned or optimized
for better performance. Examples of this include the Brain-
stormers who used neural reinforcement learning to optimize
individual skills such as intercepting and kicking the ball
[21]. However, these skills were optimized in the context
of a larger, already working policy. Similarly, MacAlpine
employed the layered-learning framework to incrementally
learn a series of interdependent behaviors [16]. Such learn-
ing techniques have been shown to be applicable to physical
robots in addition to simulated ones [14, 11, 8]. Instead
of optimizing small portions of a larger policy, we take the
approach of learning the full policy from a teacher.

In summary, our work is the first to apply imitation learn-
ing to a parameterized-action space and demonstrate the
complex policies can be learned by deep neural networks.

3. HALF FIELD OFFENSE DOMAIN
Simulated Half Field Offense (HFO) is a soccer task in

which two teams of simulated autonomous agents compete
to score goals. Each agent receives its own state sensations
and must independently select its own actions. HFO is nat-
urally characterized as an episodic multiagent POMDP be-
cause of the sequential partial observations and actions on
the part of the agents and the well-defined episodes which
culminate in either a goal being scored or the ball leaving the
play area. The following subsections introduce the low-level
state and action space used by agents in this domain.

Figure 1: 3v3 Half Field Offense: Yellow offense agents
search for an opening in the defensive formation. Red
defenders and purple keeper strive to intercept the ball
or force it out of bounds. HFO is better understood by
video than picture: 1v1 https://vid.me/sNev, 2v2 https:

//vid.me/JQTw, 3v3 https://vid.me/1b5D

State Space: The agent uses a low-level, egocentric view-
point encoded using 58 continuously-valued features. These
features are derived through Helio-Agent2D’s [2] world model
and provide angles and distances to various on-field objects
of importance such as the ball, the goal, and the other play-
ers. Figure 2 depicts the perceptions of the agent. The most
relevant features include: Agent’s position, velocity, and ori-
entation, and stamina; Indicator if the agent is able to kick;
Angles and distances to the following objects: Ball, Goal,
Field-Corners, Penalty-Box-Corners, Teammates, and Op-

44

ponents. A full list of state features may be found at https:
//github.com/LARG/HFO/blob/master/doc/manual.pdf.

Figure 2: RoboCup-2D State Representation uses a
low-level, egocentric viewpoint providing features such as
distances and angles to objects of interest like the ball, goal
posts, corners of the field, and opponents.

Action Space: HFO features a low-level, parameterized
action space. There are four mutually-exclusive discrete ac-
tions: Dash, Turn, Tackle, and Kick. At each timestep the
agent must select one of these four to execute. Each action
has 1-2 continuously-valued parameters which must also be
specified. An agent must select both the discrete action it
wishes to execute as well as the continuously valued param-
eters required by that action. The full set of parameterized
actions is:

-Dash(power, direction): Moves in the indicated direction
with a scalar power in [0, 100]. Movement is faster forward
than sideways or backwards.

-Turn(direction): Turns to indicated direction.
-Tackle(direction): Contests the ball by moving in the

indicated direction. This action is only useful when playing
against an opponent.

-Kick(power, direction): Kicks the ball in the indicated
direction with a scalar power in [0, 100].

Instead of tackling the full team-based HFO problem, we
focus on a single agent that is first tasked with scoring on an
empty goal and later with scoring on a goalie. To begin each
episode, the agent and ball are positioned randomly on the
offensive half of the field. The agent must first locate and
approach the ball, then dribble towards the goal, and kick
on target to score. Since there is no dribble action, the agent
learns its own sequence of dashes and short kicks to move
the ball in a desired direction without losing possession.

Having introduced the HFO domain, we now focus on
the networks and training methods which make imitation
learning possible.

4. MIMIC NETWORK
The success of imitation learning critically depends on the

choice of policy representation for the learner. Too simple
a representation limits the complexity of policies that may
be learned; too complex a representation runs the risk of

overfitting a limited supply of training data. We choose to
use a single deep neural network to represent the policy for
selecting both discrete actions and continuous parameters.
This network is referred to as the mimic. The mimic takes
as input a vector of continuous state features and returns a
parameterized action which can be executed in the game.

More specifically, the mimic network uses two output lay-
ers – one outputs probabilities over discrete actions, and the
other outputs continuous values over parameters. These two
output layers may be interpreted by first selecting the dis-
crete action with highest probability, and then reading the
continuous parameters associated with that action. Beyond
that, many choices exist in how to structure the intermediate
layers between the inputs and outputs. After experimenting
with several different architectures (see Table 1), we describe
two successful networks: a unified and a separated network.

Unified Mimic Network: Figure 3a introduces the ar-
chitecture of the unified mimic network: the input to the
neural net consists of 56 state features. Next are four hid-
den layers, each followed by a rectifier nonlinearity (ReLU)
with negative slope 0.01. The hidden layers h1 . . . h4 are
fully-connected with 1000, 512, 200, and 64 units respec-
tively. The ouput from the final hidden layer h4 is divided
into two separate fully-connected linear layers, one for the
four discrete actions and the other the six action-parameters.

State

Actions Parameters

h1
ReLU

h3
ReLU

h2
ReLU

h4
ReLU

Softmax Euclidean Loss

(a) Unified Mimic

State

Actions P0

h1
ReLU

h3
ReLU

h2
ReLU

h4
ReLU

h1
ReLU

h3
ReLU

h2
ReLU

h4
ReLU

h1
ReLU

h3
ReLU

h2
ReLU

h4
ReLU

P5

...

Softmax Euclidean Loss

(b) Separated Mimic

Figure 3: The Mimic Network features dual classifica-
tion/regression loss layers and either shares parameters (left)
or features separate towers for the discrete actions and each
of the parameters (right). Dashed loss layers are only in-
cluded during training time and not during inference.

Training Architecture: In order to train the mimic
network to output both probabilities over discrete actions
and continuous parameters, we jointly minimize dual loss
functions. The discrete actions are trained using a Multino-
mial, Cross-Entropy (Softmax) Loss LA between the mimic’s
probability of selecting each discrete action â and the teacher’s
choice of action a. Equation 1 shows the form of this loss
when applied to a minibatch of N examples. The action-
parameters are trained using a Regression Loss (Euclidean
Loss) LP computed over the action-parameters output by
the mimic p̂ and the teacher p (Equation 2). Since the
mimic’s output layer contains parameters for all discrete ac-

45

tions, but the teacher chooses only single discrete action, we
do not compute loss (or provide gradients) for the parame-
ters not associated with the teacher’s selected action.

In Equation 3, the mimic network, parameterized by θ, is
updated using a step of size α in the direction that mini-
mizes both losses. The parameter β trades off between the
two losses. In the experiments described, β = 0.5 meaning
that both loss functions contributed equally to the gradients
flowing through the common layers of the network. Further
exploration of methods for adaptively setting β is left for
future work.

LA = − 1

N

N∑

n=1

logP (an|ân) (1)

LP = − 1

2N

N∑

n=1

‖pn, p̂n‖22 (2)

θi+1 = θi + α
(
β∇θLA(θi) + (1− β)∇θLP (θi)

)
(3)

Separated Mimic Network: There are inherent po-
tential drawbacks to the unified mimic network (Figure 3a).
Particularly, the parameters of the shared hidden layers may
be driven in opposite directions by the dual loss functions
being optimized. One way to alleviate this concern is to
provide separate paths for the gradient of each loss func-
tion to follow. This results in the separated mimic network.
Shown in Figure 3b, this network features a separate set of
hidden layers for the discrete actions and each of the action-
parameters. The number of parameters in this network in-
creases by a factor of seven, resulting in slower training and
inference. However, the benefits of the separated mimic be-
come apparent on the complex task of scoring on a goalie.

Having defined the architecture and training procedure for
both training and inference, we now introduce the teacher
agents whose policies will guide the learning process.

5. TEACHER AGENTS
Imitation learning requires a teacher policy to mimic. For-

tunately, RoboCup 2D features a long history of competition
and code releases by various teams. These provide a wealth
of available teachers. This section introduces two teacher
policies: one deterministic and the other stochastic. Both
teacher-agents are hand-coded by human experts and are
capable of localization, decision making, and scoring. We
believe the selected teacher agents are broadly representa-
tive of the types of policies found in RoboCup and expect
that the imitation learning results presented would general-
ize to other teacher agents.

Deterministic Agent: The simpler of the two agents,
the deterministic agent relies on a fixed strategy to score on
an empty goal: it Turns towards the ball whenever the angle
to the ball is higher than a threshold of 10 degrees. If fac-
ing the ball, it Dashes forward with full (power 100) speed.
Upon reaching the ball, it Kicks with full power towards the
center of the goal. If the kick does not result in a goal, the
agent approaches the ball for another attempt. This teacher
represents a baseline: the simplest scoring policy to mimic.

Stochastic Agent: The stochastic teacher agent uses a
policy derived from Helios, the 2012 RoboCup 2D champion
team [2]. This policy is designed to coordinate with a full set
of teammates and play against a full set of opponents. Thus,

it is more sophisticated than the deterministic policy above.
Moreover, the precise action selected at each timestep varies
according to internally-seeded random number generators,
resulting in a stochastic policy which is significantly harder
to mimic than the deterministic policy. Figure 4 shows a
sample trajectory.

Both teacher policies exhibit near-optimal performance for
the empty-goal task with stochastic teacher scoring 96% of
the time and the deterministic teacher scoring 99% of the
time. Both take 72 steps on average to score. The difference
between these two teachers becomes clear when a goalie is
added to the task; in this case the stochastic teacher scores
71% of the time while the deterministic scores only 3.5% of
the time.

Figure 4: Left: without a goalie, the stochastic teacher
(Helios-Agent2D) is free to take a direct path towards scor-
ing. Right: when opposed by a goalie, even this policy can’t
prevent the goalie from occasionally deflecting the shot.

6. TRAINING PROCEDURE
Throughout this paper the same training procedure is

applied; Only the dataset or network architecture is var-
ied. Caffe [13] is used to train the deep mimic networks in
conjunction with the AdaDelta [26] adaptive learning rate
method. A momentum of 0.95 and base learning rate of 1
are used. Training continues for 30 epochs over a dataset
containing 15,000 episodes of play by a teacher, roughly one
million experience tuples in all. Each training iteration pro-
cesses a minibatch of 32 examples in parallel. The learning
rate is not reduced as we observe no evidence of overfitting.

7. SCORING ON AN EMPTY GOAL
The first, and simpler, of the tasks examined by this paper

is scoring on an empty goal. This task begins by placing the
agent and ball at different random locations on the offensive
half of the field. The agent must first locate and move to the
ball, then dribble it towards the goal, and shoot on target.
If the agent kicks the ball out of bounds or fails to gain
possession of ball within 100 timesteps, the trial ends in
failure. Successful trials typically require a specific sequence
of between 60 and 80 actions.

We explore the performance of the unified network mim-
icking the stochastic teacher as a function of the complexity
of the underlying deep neural network. Specifically we ex-
amine unified mimic networks using 1-4 hidden layers with
a varying number of hidden units in each layer. Results in

46

Loss Discrete Actions Acc Action Parameter Deviation Real Game
Network Softmax Euclidean Dash Turn Kick Dash Dash Turn Kick Kick Score Average

Structure Loss Loss Acc Acc Acc Power Angle Angle Power Angle Percent Trial Time
256 0.1753 62.87 99.13 60.59 97.23 0.4475 0.8364 16.29 8.714 5.026 28.1 147.2

256-32 0.1434 50.06 99.28 61.73 97.47 0.5586 0.6943 13.59 8.680 4.668 37.5 120.3
256-100-32 0.1452 43.50 99.26 65.54 97.56 0.5346 0.5446 10.04 8.280 4.659 81.3 90.09

500-256-100-32 0.1407 40.65 99.19 71.08 97.88 0.5028 0.6710 7.745 8.111 4.308 93.8 78.89
1000-512-200-64 0.1366 42.52 99.39 72.16 98.28 0.6150 0.6702 7.163 8.072 4.339 96.9 76.54

Table 1: Mimicking stochastic teacher on empty goal task: From left to right: Softmax Loss LA over discrete actions;
Euclidean Loss LP over action-parameters; Discrete Action Accuracy shows, for each action, how frequently the mimic selected
the same discrete action as the teacher. Action Parameter Deviation depicts the L1-norm between the mimic and teacher’s
parameters. The last columns show how frequently the mimic successfully scores goals and the average number of steps
required.

Softmax Euclidean Dash Turn Kick Dash Dash Turn Kick Kick Score Average
Arch Teacher Goalie Loss Loss Acc Acc Acc Power Angle Angle Power Angle Percentage Trial Time
UNI DET N 0.0331 11.69 99.44 91.50 99.94 0.1282 0.2374 1.645 0.7089 2.4378 97(99.8) 72.78(72.67)
UNI STO N 0.1366 42.52 99.39 72.16 98.28 0.6150 0.6702 7.163 8.072 4.339 92.4(96.4) 76.54(72.84)
UNI STO Y 0.1993 197.2 98.78 59.64 98.27 1.356 0.6923 14.21 14.30 33.39 4(71.5) 97.78(80.92)
SEP STO Y 0.098 175.26 99.37 78.01 99.23 1.237 .771 8.48 13.18 32.45 12(71.5) 84(80.92)

Table 2: Difficulty of mimicking depends on complexity of teacher policy: Performance of mimicking deterministic
(DET) and stochastic (STO) teachers. It proves harder to mimic the stochastic teacher than the deterministic one, and
hardest when the mimicking the stochastic teacher playing against a goalie. Parentheses show baseline performance of the
corresponding teacher policy. Performance improves across the board when using the separated mimic (SEP) rather than the
unified (UNI).

(a) 1 Layer Mimic (b) 2 Layer Mimic (c) 3 Layer Mimic (d) 4 Layer Mimic

(e) Teacher (f) Mimic (g) Mimic (h) Mimic

Figure 5: Visualizing learned policies: The first row depicts the trained mimic using a neural network featuring 1 to
4 hidden layers. With too few hidden layers, the policy fails to locate and approach the ball. As more hidden layers are
added, the approach becomes smoother and the shots better targeted. The second row depicts the complexity of the policy
required to score on a goalie. In (e), the teacher dribbles towards the goal and doubles back before shooting at edge of the
goal. The unified mimic cannot master this task and learned policies (f-h) result in the ball being captured, intercepted, and
kicked out of bounds.

47

Table 1 indicate that both depth and width influence the
representational capacity of the network and its ability to
successfully mimic the teacher, confirming the general in-
tuition that deeper, more complex networks yield improved
performance, up to a point. Additionally, the first row of
Figure 5 visualizes the improvement in learned policies as a
function of the number of hidden layers in each network.

Examining the dual loss functions in Table 1 shows that
as complexity is added to the mimic network, the accuracy
of mimicking both the discrete actions of the teacher and
the continuous parameters increases. Of the discrete ac-
tions, Dash and Kick start off with high accuracy, leav-
ing little room for improvement. The Turn action starts
with low accuracy and shows the most improvement. Sim-
ilarly, of the parameterized actions, Turn-Direction shows
the most relative improvement, followed by Kick-Power and
Kick-Direction. Thus the Dash and Kick actions are rela-
tively straightforward and the more complex networks use
the additional representation power to make better decisions
regarding when and how to Turn. Dash-Power gets progres-
sively less accurate in the more complex networks. This does
not affect overall scoring performance, which monotonically
increases as a function of network complexity.

The deterministic teacher proves much easier to mimic
than the stochastic one. Table 2 shows that overall loss for
both discrete actions and continuous parameters are approx-
imately three times smaller when mimicking the determinis-
tic teacher compared to the stochastic teacher. This trans-
lates into a mimic that can more reliably score in shorter
amounts of time. Regardless, on this task, both policies are
largely successful, with the worst of the two conserving over
95% of the scoring potential of the teacher.

8. SCORING ON A GOALIE
Far more difficult than the task of scoring on an empty

goal is the challenge of scoring on an active goalie. More
than just requiring the player to kick around the goalie, this
task requires a complex dance of positioning and baiting to
draw the keeper out and strike when the goal is open. An ex-
ample of the sophisticated strategy used to score on a goalie
is shown in Figure 5e. The nondeterministic policy used by
the keeper is from the winning Helios-Agent2D codebase [2]
and strikes an effective balance between repositioning itself
near the goal to minimize open shots and moving out to
tackle the ball. In this task, agent uses an augmented state
representation with eight additional features encoding the
goalkeeper’s angle, distance, velocity, and orientation.

Table 3 shows the performance of teachers and mimics on
this task. The stochastic teacher (Helios-Agent2D) proves
quite capable, with a scoring percentage of 70%. The de-
terministic teacher, whose policy is unaware of the goalie,
ends up getting the ball captured by the goalie 96.5% of the
time. Mimicking the stochastic policy using the Unified Net-
work proves highly difficult, and in terms of scoring goals,
the resulting mimic fares no better than the deterministic
teacher (Figures 5f-5h visualize attempts to score by this
policy). However, the separated network proves more capa-
ble with higher accuracy and lower deviation in nearly all
categories (Table 2) as well as three times the amount of
goals scored. We hypothesize that the lack of shared layers
between action-parameters in the separated network allowed
each parameter to achieve a higher degree of specialization
than possible in the unified network.

Policy Goal CAP OOB OOT
Stochastic Teacher 143 34 20 3
Deterministic Teacher 7 193 0 0
Unified Mimic 8 138 49 5
Separated Mimic 24 123 44 9

Table 3: Scoring on a goalie: The 200 trials of each pol-
icy end with the goalie capturing the ball (CAP), the ball
going out of bounds (OOB), or running out of time (OOT).
Learning from the stochastic teacher, the separated mimic
network performs better on this complex task than the uni-
fied, and both outperform the deterministic teacher.

9. DISCUSSION AND CONCLUSIONS
The promise of imitation learning lies only partially in

the learned policy. More interesting is the ability to convert
between different policy representations. Starting from a
human engineered teacher policy represented by thousands
of lines of source code, imitation learning allows us to de-
rive a mimic policy in the form of neural network that cap-
tures a subset of the behaviors of the teacher. This neu-
ral network representation allows the efficient computation
of policy-gradients with respect to network parameters. In
contrast, estimating these gradients in the original teacher
policy would be time-consuming if not impossible and would
first require human expertise to determine and expose the
tuneable parameters of the code base.

We believe that the mimicked policies described in this pa-
per will form a solid foundation for future work on policy im-
provement, perhaps using the policy gradients provided by a
critic network. To this end, source code and full information
about the feature and action spaces for the Half Field Of-
fense domain is available at https://github.com/LARG/HFO
and for mimic-learning at https://github.com/mhauskn/

dqn-hfo/tree/mimic.
In summary, this paper demonstrates, for the first time,

successful imitation learning of goal scoring policies in a
parameterized action space. Neural networks trained with
a dual classification/regression loss prove capable of high-
fidelity imitation learning from goal-scoring stochastic and
deterministic teacher policies. This work represents a step
in the direction of learning rather than programming com-
plex policies and confirms that deep neural networks show
much promise as function approximators for these policies.
Our ongoing research seeks to incorporate learning to fur-
ther improve the mimic policies.

Acknowledgments
This work has taken place in the Learning Agents Research
Group (LARG) at the Artificial Intelligence Laboratory, The
University of Texas at Austin. LARG research is supported
in part by grants from the National Science Foundation
(CNS-1330072, CNS-1305287), ONR (21C184-01), AFRL
(FA8750-14-1-0070), AFOSR (FA9550-14-1-0087), and Yu-
jin Robot. Additional support from the Texas Advanced
Computing Center, and Nvidia Corporation.

REFERENCES
[1] Pieter Abbeel and Andrew Y. Ng. Apprenticeship

learning via inverse reinforcement learning. In
Proceedings of the Twenty-first International

48

Conference on Machine Learning, ICML ’04, pages 1–,
New York, NY, USA, 2004. ACM.

[2] Hidehisa Akiyama. Agent2d base code, 2010.

[3] David Andre and Astro Teller. Evolving Team Darwin
United. Lecture Notes in Computer Science,
1604:346–353, 1999.

[4] Brenna Argall, Sonia Chernova, Manuela M. Veloso,
and Brett Browning. A survey of robot learning from
demonstration. Robotics and Autonomous Systems,
57(5):469–483, 2009.

[5] Christopher G. Atkeson and Stefan Schaal. Robot
learning from demonstration. In Proc. 14th
International Conference on Machine Learning, pages
12–20. Morgan Kaufmann, 1997.

[6] J Andrew Bagnell and Stéphane Ross. Efficient
Reductions for Imitation Learning. In Proceedings of
the 13th International Conference on Artificial
Intelligence and Statistics (AISTATS) 2010, volume 9,
pages 661–668, 2010.

[7] A. Billard, Y. Epars, S. Calinon, G. Cheng, and
S. Schaal. Discovering optimal imitation strategies.
Robotics and Autonomous Systems, 47(2-3):69–77,
2004.

[8] Bruno Castro da Silva, Gianluca Baldassarre, George
Konidaris, and Andrew G. Barto. Learning
parameterized motor skills on a humanoid robot. In
ICRA, pages 5239–5244. IEEE, 2014.

[9] Carlos Guestrin, Milos Hauskrecht, and Branislav
Kveton. Solving factored mdps with continuous and
discrete variables. In Proceedings of the 20th
Conference on Uncertainty in Artificial Intelligence,
UAI ’04, pages 235–242, Arlington, Virginia, United
States, 2004. AUAI Press.

[10] Xiaoxiao Guo, Satinder Singh, Honglak Lee, Richard L
Lewis, and Xiaoshi Wang. Deep learning for real-time
atari game play using offline monte-carlo tree search
planning. In Z. Ghahramani, M. Welling, C. Cortes,
N.D. Lawrence, and K.Q. Weinberger, editors,
Advances in Neural Information Processing Systems
27, pages 3338–3346. Curran Associates, Inc., 2014.

[11] Matthew Hausknecht and Peter Stone. Learning
powerful kicks on the aibo ers-7: The quest for a
striker. In Proceedings of the RoboCup International
Symposium 2010. Springer Verlag, 2010.

[12] Matthew J. Hausknecht and Peter Stone. Deep
reinforcement learning in parameterized action space.
CoRR, abs/1511.04143, 2015.

[13] Yangqing Jia, Evan Shelhamer, Jeff Donahue, Sergey
Karayev, Jonathan Long, Ross Girshick, Sergio
Guadarrama, and Trevor Darrell. Caffe: Convolutional
architecture for fast feature embedding. arXiv preprint
arXiv:1408.5093, 2014.

[14] Nate Kohl and Peter Stone. Machine learning for fast
quadrupedal locomotion. In The Nineteenth National
Conference on Artificial Intelligence, pages 611–616,
July 2004.

[15] T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess,
T. Erez, Y. Tassa, D. Silver, and D. Wierstra.
Continuous control with deep reinforcement learning.
ArXiv e-prints, September 2015.

[16] Patrick MacAlpine, Mike Depinet, and Peter Stone.
UT Austin Villa 2014: RoboCup 3D simulation league

champion via overlapping layered learning. In
Proceedings of the Twenty-Ninth AAAI Conference on
Artificial Intelligence (AAAI), January 2015.

[17] Warwick Masson and George Konidaris.
Reinforcement learning with parameterized actions.
CoRR, abs/1509.01644, 2015.

[18] Volodymyr Mnih, Koray Kavukcuoglu, David Silver,
Andrei A. Rusu, Joel Veness, Marc G. Bellemare, Alex
Graves, Martin Riedmiller, Andreas K. Fidjeland,
Georg Ostrovski, Stig Petersen, Charles Beattie, Amir
Sadik, Ioannis Antonoglou, Helen King, Dharshan
Kumaran, Daan Wierstra, Shane Legg, and Demis
Hassabis. Human-level control through deep
reinforcement learning. Nature, 518(7540):529–533,
February 2015.

[19] Emilio Parisotto, Lei Jimmy Ba, and Ruslan
Salakhutdinov. Actor-mimic: Deep multitask and
transfer reinforcement learning. CoRR,
abs/1511.06342, 2015.

[20] Nathan Ratliff, David Bradley , J. Andrew (Drew)
Bagnell, and Joel Chestnutt. Boosting structured
prediction for imitation learning. In B. Scholkopf, J.C.
Platt, and T. Hofmann, editors, Advances in Neural
Information Processing Systems 19, Cambridge, MA,
2007. MIT Press.

[21] Martin A. Riedmiller and Thomas Gabel. On
experiences in a complex and competitive gaming
domain: Reinforcement learning meets robocup. In
CIG, pages 17–23. IEEE, 2007.

[22] StÃl’phane Ross, Geoffrey J. Gordon, and Drew
Bagnell. A reduction of imitation learning and
structured prediction to no-regret online learning. In
Geoffrey J. Gordon and David B. Dunson, editors,
Proceedings of the Fourteenth International
Conference on Artificial Intelligence and Statistics
(AISTATS-11), volume 15, pages 627–635. Journal of
Machine Learning Research - Workshop and
Conference Proceedings, 2011.

[23] Scott Sanner, Karina Valdivia Delgado, and
Leliane Nunes de Barros. Symbolic dynamic
programming for discrete and continuous state MDPs.
CoRR, abs/1202.3762, 2012.

[24] David Silver, James A. Bagnell, and Anthony Stentz.
High performance outdoor navigation from overhead
data using imitation learning. In Oliver Brock, Jeff
Trinkle, and Fabio Ramos, editors, Robotics: Science
and Systems. The MIT Press, 2008.

[25] Luis Gustavo Vianna, Scott Sanner, and
Leliane Nunes de Barros. Bounded approximate
symbolic dynamic programming for hybrid MDPs.
CoRR, abs/1309.6871, 2013.

[26] Matthew D. Zeiler. ADADELTA: An adaptive
learning rate method. CoRR, abs/1212.5701, 2012.

49

Optimal Adaptive Market-Making with Inventory: A
Symbolic Closed-form Solution

Shamin Kinathil
ANU and NICTA

Canberra, Australia
shamin.kinathil@anu.edu.au

Scott Sanner
Oregon State University

Corvallis, Oregon
scott.sanner@oregonstate.edu

Sanmay Das
Washington University in St.

Louis
St. Louis, Missouri
sanmay@wustl.edu

Nicolás Della Penna
ANU and NICTA

Canberra, Australia
nicolas.della-

penna@anu.edu.au

ABSTRACT
Market-makers serve an important role as providers of liquidity
and order in financial markets, particularly during periods of high
volatility. Optimal market-makers solve a sequential decision mak-
ing problem, where they face an exploration versus exploitation
dilemma at each time step. A belief state MDP based solution was
presented by Das and Magdon-Ismail (2009). This solution how-
ever, was closely tied to the choice of a Gaussian belief state prior
and did not take asset inventory into consideration when calculat-
ing an optimal policy. In this work we introduce a novel contin-
uous state POMDP framework which is the first to solve, exactly
and in closed-form, the optimal sequential market-making problem
with inventory, arbitrary belief state priors, trader models and re-
ward functions via Symbolic Dynamic Programming. We use this
novel model and solution to show that optimal policies for loss-
bounded adaptive market-making are heavily inventory-dependent
and calculate such policies under a variety of market models and
conditions.

1. INTRODUCTION
Financial markets are well known for their volatility [1, 16, 19].

A prime driver of high volatility are periods of high uncertainty,
such as those following price shocks, about the value of the assets
being traded. These periods can lead to sparse trading, where there
are few offers and counter-offers, which effectively stop markets
from functioning. Market-makers (MMs) can be used in these situ-
ations to attract trading and maintain order in markets. Examples of
markets which employ MMs include the NASDAQ, which allows
for multiple MMs to compete, and prediction markets [12, 23].

Market-makers do not perform their services ex gratia. They aim
to extract a profit, known as the bid-ask spread. When setting the
bid and ask price, MMs must trade-off between setting prices to
extract maximum profit from the next trade versus setting prices to
get as much information about the new value of the asset so as to
generate larger profits from future trades.

In this paper we recast the sequential market-making problem as
a new general class of continuous state Partially Observable MDP
(POMDP) [10] that subsumes our proposed market-making model
and admits closed-form solutions. We also provide a Symbolic
Dynamic Programming (SDP) [11] based algorithm that can ef-
ficiently derive a value function and policy for this new class of

POMDPs.
By utilising the POMDP framework we enable several new ad-

vances in algorithmic market-making:
• We are the first to address the open question of sequentially

optimal market-making with inventory based reasoning by
extending the seminal work of Glosten and Milgrom [6],
Amihud and Mendelson [4] and Das and Magdon-Ismail [26].
• Our solution is more general than previous solutions and al-

lows the use of arbitrary belief state priors to represent the
MM’s uncertainty about the true value of the asset, asymmet-
ric bid-ask spreads around the mean of the MM’s belief, flex-
ible models of trader behaviour and a variety of inventory-
based rewards with both hard constraints and preferences.
• Our solution provides sequentially optimal policies which

maximise MM profit under a variety of inventory conditions
and trader models, while simultaneously bounding loss. Pre-
vious solutions which neglected inventory are prone to se-
lecting highly sub-optimal bid-ask spreads which may lead
to unexpected losses.

This paper is organised as follows: In Section 2, we introduce
the role of MMs within financial markets. In Section 3, we in-
troduce a novel formulation of optimal sequential market-making
in the POMDP framework and review general POMDP solution
techniques in Section 4. In Section 5 we introduce a specific SDP-
based solution to our optimal sequential market-making model. We
examine the efficacy of our market-making model in Section 6,
where we demonstrate the properties of sequential optimality, in-
ventory based reasoning, flexible trader models and computational
tractability. We survey related work in Section 7 and conclude in
Section 8 with potential directions for future research.

2. BACKGROUND
Market-makers serve an important liquidity provision role in many
financial markets by providing immediacy to transactions. In prac-
tice MMs often operate in tandem with a Continuous Double Auc-
tion [15] market structure in which both buyers and sellers submit
limit orders in the form of bids and asks which are then matched al-
gorithmically. Theoretical models of market-making typically ab-
stract away limit orders from other traders and model the market as
a dealer market, with the MM taking one side of every order. In
these models it is common for the MM to quote a bid price, a price
at which they are willing to buy some number of shares, and an

50

ask price the price at which they are willing to sell some number
of shares, at every point in time. The difference between the two
prices, known as the bid-ask spread, serves three main purposes:
(1) to provide an incremental profit to motivate the MM to actu-
ally provide their services; (2) to compensate the MM for the risk
inherent in holding inventory [4]; and (3) to compensate the MM
for the adverse selection encountered in trading with a potentially
more informed population [6].

In recent history, research into algorithmic market-making has
focussed on financial [25] and prediction market settings [22, 32].
Market-making in prediction markets starts from the notion of a
proper Market Scoring Rule (MSR) [12]. Proper MSRs are both
myopically incentive compatible, that is, they incentivize agents to
move prices to their valuation, and are also loss-bounded, at least in
bounded-payoff markets. Despite these attractive features, proper
MSRs are, in general, loss-making [24] and MMs using proper
MSRs must be subsidised in order to perform their task of liquidity
provision. Although there has been some theoretical work on the
design of market makers that can adapt their spread over time [27]
they can be highly sensitive to the price path [31].

Learning based approaches to market-making in financial mar-
kets attempt to infer either underlying values or future prices based
on trader models [25, 26] or time-series analysis of prices [29].
Such models have been used to formulate efficient algorithms under
zero-profit (competitive) conditions where, in perfect competition,
the MM is pushed to setting bid and ask prices that yield a zero
expected profit [17]. An algorithm for a profit-maximising (mo-
nopolist) MM was presented by Das and Magdon-Ismail [26]. In
this setting, bid and ask prices are set in a way that maximises the
total discounted profit obtained by the MM. The profit-maximising
market-making algorithm was cast as a belief state MDP where the
MM’s belief about the value of the asset was described by a Gaus-
sian density function. The MM set bid and ask prices based on the
solution of the Bellman equation for a Gaussian belief state approx-
imation of this MDP. While these models are promising in terms
of their potential to provide liquidity while simultaneously operat-
ing at a profit, they come with no guarantees on worst case loss,
since they do not take inventory into account when setting prices.
In this paper we study the problem of optimising profit while still
maintaining inventory-sensitivity, the natural way to bound risk in
the market-making setting. We present a new formalism for opti-
mal sequential market-making based on continuous state POMDPs
which allows for arbitrary belief state distributions and flexible
trader models while still admitting exact closed-form solutions.

3. MARKET-MAKING AS A POMDP
In this section we introduce our first contribution, a novel and

flexible continuous state POMDP framework for sequentially op-
timal market-making with inventory that admits closed-form dy-
namic programming solutions.

3.1 POMDP Preliminaries
A POMDP is defined by the tuple 〈S,A, T ,R,O,Ω,H, γ〉 [10].

S specifies a potentially infinite (e.g., continuous) set of states while
A and O respectively specify a finite set of actions and observa-
tions. The transition function T : S × A × S → [0, 1] defines the
effect of an action on the state. Ω : O × A × S → [0, 1] is the
observation function which defines the probability of receiving an
observation given that an agent has executed an action and reached
a new state. R : S × A → R is the reward function which encodes
the preferences of the agent. H represents the number of decision
steps until termination and the discount factor γ ∈ [0, 1) is used to
geometrically discount future rewards.

Partial observability is encapsulated within a probabilistic obser-
vation model specified by O and Ω, which relates possible obser-
vations to states. POMDP agents maintain a belief b ∈ ∆(S), a
probability distribution over S and calculate a new belief state b′

after action a and observation o as follows1:

b′(s′) =

Ω(o, a, s′) · ∑
s∈S

b(s) · T (s, a, s′)

P(o|b, a)
,

where P(o|b, a) =
∑

s′∈S
Ω(o, a, s′)

∑

s∈S
T (s, a, s′) · b(s).

Beliefs provide sufficient statistics for the observable history of a
POMDP agent without loss of optimality [2].

The objective of a POMDP agent is to find an optimal policy
π∗ : ∆(S) → A, which specifies the best action to take in every
belief state b so as to maximise the expected sum of discounted
rewards over the planning horizonH. The value function under the
optimal policy can be written as:

V ∗(b) = Eπ∗



H∑

h=0

γh
∑

s∈S
R
(
s, π∗(bh(s))

)
· bh(s)


 . (1)

The POMDP value function can be parameterized by a finite set
of functions linear in the belief representation known as α-vectors
and is convex in the belief [3].

The value function at a given belief b ∈ ∆(S) can be calculated
using:

V (b) = max
α∈V

∑

s∈S
α(s) · b(s).

The results from the discrete state setting presented above can be
generalised to the continuous case by replacing α-vectors and

∑

by their continuous state counterparts α-functions and
∫

, respec-
tively [20].

In the next Section we show how the expressive POMDP frame-
work can be used to encapsulate an optimal sequential market-
making model with inventory.

3.2 Optimal Sequential Market-Making Model
The market-making model used in this paper extends the seminal

theoretical model of Glosten and Milgrom [6] and the sequential
model of Das and Magdon-Ismail [26] by incorporating the inven-
tory control conditions of Amihud and Mendelson [4] as well as
arbitrary belief state priors, trader models and asymmetric bid-ask
spreads.

We begin by formulating the MM’s sequential decision problem
in the POMDP framework:
• S = 〈v, i〉, where v ∈ R+ represents the value of the asset

and i ∈ N represents the MM’s inventory.
• A = {(bid1, ask1) , . . . , (bidN , askN)} represents a finite set

of allowed N bid-ask pairs, where bidn, askn ∈ R+ and
bidn < askn.

The bid represents the price at which the MM is willing to buy
one unit of the asset and the ask is the price at which the MM is
willing to sell one unit of the asset.
• O = {buy, sell , hold} represents the possible actions of a

trader at each time step.
At each time step the MM interacts with a trader t drawn from

a heterogeneous population of traders with a known prior distri-
bution. The trader has an uninformed estimate of the value of the
asset vt = v + εt, where εt ∈ R specifies the noise. In this paper
we allow the traders to be specified according to two trader models:
(1) Glosten Milgrom (GM) [6]; and (2) Discrete noise (D). In the

1Here we assume a discrete state for simplicity. For continuous
state or state components, summations should be replaced by inte-
grals.

51

traditional GM setting, traders are either informed or uninformed,
with εt set to 0.0. The Discrete setting involves informed,
over-valuing and under-valuing traders, with εt set to 0.0, con-
stant c ∈ R and constant −c ∈ R, respectively.

With the exception of uninformed traders, an arriving trader of
type t will execute a buy order at an ask price askn if vt > askn,
a sell order at the bid price bidn if vt < bidn, and will hold other-
wise. We use an intermediate variable u ∼ P(O), with P(u) = 1/3

for uninformed trader orders.
• The transition function T for each state variable in S is given

by:
T (i′|i, v, bid, ask, t = informed, u) =

δ


i′ −





(v > ask + εt) ∧ (i ≥ 1) : i− 1

(v < bid+ εt) : i+ 1

otherwise : i




T (i′|i, v, bid, ask, t = uninformed, u) =

δ


i′ −





(u = buy) ∧ (i ≥ 1) : i− 1

(u = sell) : i+ 1

otherwise : i




T (v′|i, v, bid, ask, t, u) = δ [v′ − v]

The Dirac function δ[·] ensures that the transitions are valid con-
ditional probability functions that integrate to 1.0. The value v is
assumed to be fixed but unknown to the MM. The inventory i in-
crements or decrements according to the observed trader action.
• The observation function Ω for each trader action is specified

by:
Ω (buy|i, v, bid, ask, t = informed, u) ={

(v > ask + εt) ∧ (i ≥ 1) : 1

otherwise : 0

Ω (sell |i, v, bid, ask, t = informed, u) ={
(v < bid+ εt) : 1

otherwise : 0

Ω (hold |i, v, bid, ask, t = informed, u) ={
(v > bid+ εt) ∧ (v < ask + εt) : 1

otherwise : 0

Ω (o|i, v, bid, ask, t = uninformed, u) = I [o = u]

Ω encodes the signal received by the MM upon the action taken
by the trader. We note that information is conveyed only by the
direction of the trade. In the case of an uninformed trader, the
observation follows directly from their probabilistic choice deter-
mined in the transition function.
• The reward function R, which constrains inventory to be

non-negative, is specified as:
R(i′, v′, bid, ask, t = informed, u) =




(v′ + εt > ask) ∧ (i′ ≥ 1) : ask

(v′ + εt < bid) : −bid
(v′ + εt > bid) ∧ (v′ + εt < ask) : 0

(v′ + εt > ask) ∧ (i′ < 0) : 0

otherwise : −∞
R(i′, v′, bid, ask, t = uninformed, u) =




u = buy ∧ (i′ ≥ 1) : ask

u = sell : −bid
u = hold : 0

The reward received by the MM is dependent upon the action ex-
ecuted by the trader. In the case of a buy order, the MM receives
the ask price, a sell order results in the MM paying the bid price
whereas a hold order results in no loss or gain. Our market-making
model allows for an expressive class of reward functions that are
piecewise linear in the value, inventory, and bid and ask prices.

v

i

b

a

t u

v'

i'

o

R

Figure 1: An optimal sequential market-making continuous state
POMDP. S = v, i. b, a ∈ A, o ∈ O and R = R. t and u are
intermediate variables. Primed variables represent the “next state”
of the variable. Arrows represent a dependency.

Hard constraints, such as the non-negative inventory condition, can
be encoded using −∞. Soft constraints, such as penalising linear
deviations from a target inventory level, can be encoded using finite
piecewise linear rewards.

The aim of the MM is to maximise its reward over a planning
horizon H. In order to do this the MM must trade-off profit taking,
which can be seen as exploiting a certain bid-ask pair, and price dis-
covery, where the MM explores other bid-ask pairs in A. Figure 1
shows our model graphically.

As a critical insight in this work, we remark that by formulat-
ing the optimal sequential market-making model as a continuous
state POMDP it is possible to separate belief state considerations
from the dynamic programming solution. In subsequent sections
we show that our model leads to an elegant piecewise linear struc-
ture in the α-functions derived through an SDP solution. This is
in stark contrast with the approach of Das and Magdon-Ismail [26]
which required non-linear operations that complicate the consider-
ation of inventory.

4. POMDP SOLUTION TECHNIQUES
In this section we provide an overview of two Value Iteration

(VI) algorithms for POMDPs: (1) Monahan’s exact VI [5]; and (2)
Pineau’s Point Based Value Iteration (PBVI) [13], a fast approx-
imate solution method. Either method can be used to solve the
optimal sequential market-making model presented in Section 3.
For ease of exposition we present finite state formulations of both
methods, but make note that both can be extended to the continu-
ous state case by replacing s, s′ and

∑
by their continuous state

counterparts ~x, ~x′ and
∫

, respectively.

4.1 Exact Value Iteration
In Monahan’s formulation of exact VI [5], the value function at

horizon V h is calculated in terms of the following vector opera-
tions1:

αa,o,hi = R(s, a) · 1

|O|+

γ ·
∑

s′∈S
Ω(o, a, s′) · T (s, a, s′) · αh−1

i (s′)

∀αh−1
i ∈ V h−1 (2)

Γa,o,h =
⋃

i

{
αa,o,hi

}

52

Γa,h = �o∈OΓa,o,h (3)

V h =
⋃

a∈A
Γa,h

For simplicity of presentation, we assume the initial value func-
tion V 0 = 0.

Exact VI computes the optimal action for every possible belief
point in ∆(S) which results in an exponential growth in the number
of α-functions used to represent V h. Equations (2) and (3) gen-
erate |A||O||V h−1| and |A||V h−1||O| α-functions respectively, at
every horizon h. Hence, in the worst case |V h| = |A||V h−1||O|.
In theory it is possible to reduce the number of α-functions in V h
without affecting solution quality, however it is intractable for any
reasonably sized domain [8, 9]. The obvious limitations of exact VI
motivates the use of lower bounded approximate POMDP solution
algorithms such as PBVI, which we present in the next section.

4.2 Point-Based Value Iteration
PBVI [13] mitigates the intractability of exact VI by consider-

ing only a finite subset of the belief space B = {b0, . . . bN} during
the Bellman backup operation. By restricting the belief space to
B, PBVI can only calculate approximate solutions. However, this
apparent loss of optimality is mitigated by its ability to compute
successful policies for much larger domains.

PBVI for POMDPs with discrete and finite S, A and O can be
written as follows:

αa,o,hi = R(s, a) · 1

|O|+

γ ·
∑

s′∈S
Ω(o, a, s′) · T (s, a, s′) · αh−1

i (s′)

∀αh−1
i ∈ V h−1

Γa,o,h =
⋃

i

{
αa,o,hi

}

Γa,hb =
∑

o∈O
argmax
α∈Γa,o,h

(α · b) (4)

αhb = argmax
Γ
a,h
b

,a∈A

(
Γa,hb · b

)
, ∀b ∈ B (5)

V h =
⋃

b∈B

{
αhb

}

In the formulation above, the initial value function V 0 is set as
it was for VI. PBVI implicitly prunes dominated α-functions twice
via the argmax operation in Equations (4) and (5), respectively.
Thus, the final |V h| is limited to |B|, which is in stark contrast to
exact VI where |V h| = |A||V h−1||O|.

Standard PBVI can be extended to the continuous state setting
by simply replacing s, s′ and

∑
by their continuous state coun-

terparts ~x, ~x′ and
∫

, respectively. The α · b computation in Equa-
tions (4) and (5) is also replaced by its continuous state counter-
part,

∫
(α · b) d~x. Despite the ease of mathematically formulating

the algorithm for continuous states, PBVI cannot be easily imple-
mented due to the infinite number of states in ~x. In the next section
we show that a large subclass of continuous state POMDPs can be
solved optimally for arbitrary horizons using Symbolic Dynamic
Programming2.

1The � of sets is defined as �j∈{1,...,n}Sj = S1� · · ·�Sn

where the pairwise cross-sum P�Q = {~p+ ~q|~p ∈ P, ~q ∈ Q}.
2Whilst SDP also applies to VI, we focus on PBVI for its efficiency
from here out.

5. SYMBOLIC DYNAMIC PROGRAMMING
In this section we make our second contribution by showing

how the continuous state POMDP based optimal sequential market-
making model can be solved in closed-form via a Symbolic Dy-
namic Programming (SDP) [11] based version of PBVI [13].

5.1 Symbolic Case Calculus
SDP assumes that all functions can be represented in case state-

ment form [11] as follows:

f =





φ1 : f1

...
...

φk : fk

Here, the φi are logical formulae defined over the state ~x that
can consist of arbitrary logical combinations of boolean variables
and linear inequalities (≥, >,<,≤) over continuous variables. We
assume that the set of conditions {φ1, . . . , φk} disjointly and ex-
haustively partition ~x such that f is well-defined for all ~x. In this
paper we restrict the fi to be either constant or linear functions of
the state variable ~x. Henceforth, we refer to functions with linear φi
and piecewise constant fi as linear piecewise constant (LPWC) and
functions with linear φi and piecewise linear fi as linear piecewise
linear (LPWL) functions.

Operations on case statements may be either unary or binary. All
of the operations presented here are closed-form for LPWC and
LPWL functions. We refer the reader to [30, 33] for more thorough
expositions of SDP for piecewise continuous functions.

Unary operations on a single case statement f, such as scalar mul-
tiplication c · f where c ∈ R, are applied to each fi (1 ≤ i ≤ k).
Binary operations such as addition, subtraction and multiplication
are executed in two stages. Firstly, the cross-product of the logical
partitions of each case statement is taken, producing paired parti-
tions. Finally, the binary operation is applied to the resulting paired
partitions. The “cross-sum” ⊕ operation can be performed on two
cases in the following manner:

{
φ1 : f1

φ2 : f2
⊕
{
ψ1 : g1

ψ2 : g2
=





φ1 ∧ ψ1 : f1 + g1

φ1 ∧ ψ2 : f1 + g2

φ2 ∧ ψ1 : f2 + g1

φ2 ∧ ψ2 : f2 + g2

“cross-subtraction” 	 and “cross-multiplication” ⊗ are defined
in a similar manner but with the addition operator replaced by the
subtraction and multiplication operators, respectively. Some parti-
tions resulting from case operators may be inconsistent and are thus
removed.

Substitution into case statements is performed via a set θ of vari-
ables and their substitutions e.g. θ =

{
x′1/(x1 + x2)

}
, where the

LHS of the / represents the substitution variable and the RHS of the
/ represents the expression that should be substituted in its place. θ
can be applied to both non-case functions fi and case partitions φi
as fiθ and φiθ, respectively. Substitution into case statements can
be written as:

fθ =





φ1θ : f1θ

...
...

φkθ : fkθ

Substitution is used when calculating integrals with respect to
deterministic δ transitions [30].

In principle, case statements can be used to represent all POMDP
components, i.e., R(~x, a), T (~x, a, ~x′), Ω(o, a, ~x′), α(~x) and b(~x). In
practice, case statements are implemented using a more compact
representation known as Extended Algebraic Decision Diagrams

53

(XADDs) [30], which also support efficient versions of all of the
aforementioned operations.

5.2 Closed-form Symbolic PBVI for Continu-
ous State POMDPs

In this section we extend the Symbolic PBVI algorithm of [34]
by relaxing its LPWC assumption to the more general LPWL case.
We also show that the set of α-functions in the solution are LPWL
functions that permit efficient computation. Symbolic PBVI for
continuous S and discrete A POMDPs can be written solely in
terms of the following case operations:

αa,o,hi = R(~x, a) · 1

|O|+

γ ⊗
∫

Ω(o, a, ~x′)⊗ T (~x, a, ~x′)⊗ αi(~x′) d~x′,

∀αi(~x′) ∈ V h−1 (6)

Γa,o,h =
⋃

i

{
αa,o,hi

}

Γa,hb =
∑

o∈O
argmax
α∈Γa,o,h

(α · b)

αhb = argmax
Γ
a,h
b

,a∈A

(
Γa,hb · b

)
, ∀b ∈ B

V h =
⋃

b∈B

{
αhb

}

To calculate the optimal h-stage-to-go value function we modify
the Bellman backup in Equation (6) to the following form where
we marginalize out intermediate variables for the trader type t and
outcome u:

αa,o,hi =
⊕

u

⊕

t

P(t) · R(~x, a, t, u) · 1

|O|+

γ ⊗
∫

Ω(o, a, ~x′, t, u)⊗ T (~x, a, ~x′, t, u)⊗ αi(~x′) d~x′,

∀αi(~x′) ∈ V h−1 (7)

In Equation (7) the Backup operation is calculated as an expec-
tation over trader types t in a given trader model and observations
u ∈ {buy, sell , hold} from uninformed traders. We note that this
algorithm can be easily extended to very long horizons through
model predictive control methods [14] which optimise a single-step
look-ahead followed by the execution of a static policy.

A critical insight in this work is that all operations used in the
algorithm are closed-form for LPWC representations of Ω(·) and
LPWL representations of T (·) andR(·) [30, 33]. A LPWC Ω(·) en-
sures that theα-functions are LPWL and closed-form after the Bell-
man backup operation; the integration operation in Equation (7)
results in a LPWL function. In contrast, a LPWL Ω(·) would not
result in a closed-form LPWL α-function. Therefore, by induction,
the Symbolic PBVI value function V h remains closed-form for ar-
bitrary horizons. This result holds for the subclass of continuous
state POMDPs with the aforementioned representations of Ω(·),
T (·) andR(·), of which our optimal sequential market-making model
in Section 3.2 is an instance.

Symbolic PBVI gives a lower bound on the optimal exact VI [5]
value function and, if all belief states are enumerated toH, the solu-
tion is optimal. In the context of optimal sequential market-making,
the lower bound policy guarantees that the MM makes at least as
much profit as indicated by the PBVI value function evaluated at a
belief state.

6. RESULTS
In this section we demonstrate that our novel optimal sequential

market-making model: (1) is sequentially optimal; (2) utilises in-
ventory based reasoning; (3) works with flexible trader models; and
(4) is computationally tractable.

As far as we are aware, our model is the first to demonstrate these
properties exactly and in closed-form. We note that the work of Das
and Magdon-Ismail [26] is restricted to Gaussian initial beliefs, the
traditional GM trader model and cannot reason about inventory. As
a result, the Das and Magdon-Ismail MM can learn from trades that
it is unable to honour, which is fundamentally invalid for the low
inventory settings.

6.1 Experimental Settings
For each of the analyses an initial set of beliefs over S = 〈v, i〉

is used to generate the set of all reachable beliefs B to H. Trader
proportions under the Glosten Milgrom and Discrete models were
set to P(t) = 0.5 and P(t) = 1/3, respectively. The noise under the
Discrete model for over-valuing and under-valuing traders was
set to 10.0 and −10.0, respectively. While we can effectively solve
for H = 30 or more, we intentionally restrict the horizon to H = 3

in the initial set of evaluations for purposes of interpretation and
explanation.

6.2 Sequential Optimality
In Figure 2 we present the sequentially optimal policy of our MM

operating within the Glosten Milgrom trader model with an initial
belief of 〈{U [0.0, 50.0], U [50.0, 100.0]} , 1.0〉 and A =

{
(bid, ask) |

(bid < ask), bid, ask ∈ {0.0, 25.0, 49.0, 51.0, 75.0, 99.0}
}

.
We can see that the MM changes the optimal H = 3 bid-ask pair

of [0.0, 75.0] in response to trader actions: the ask price is raised
in response to a buy , lowered following a hold and unchanged in
the event of a sell order. The actions chosen at H = 2 reflect the
optimal choice given the MM’s updated belief. At H = 1 the MM
chooses actions that ensure that a trader will buy , contingent upon
having positive inventory. Furthermore, an optimal bid price of 0.0

is used by the MM for allH, which is due to there being a non-zero
probability that an uninformed trader will sell to the MM at this
bid price, a fact which the MM exploits. The sequence of actions
show how the MM chooses to (asymmetrically) modulate its bid
and ask prices, in response to the order stream, to explore market
value while protecting itself against inventory constraints.

6.3 Inventory Sensitivity
In Figure 3 we present the optimal H = 3 actions of our MM

operating within the Glosten Milgrom trading model with differ-
ent initial beliefs and A =

{
(bid, ask)|(bid < ask), bid, ask ∈

{20.0, 40.0, 60.0, 80.0, 100}
}

. Upon comparing Figure 3a and Fig-
ure 3b we notice that, with the exception of the i = 0.0 case, a nar-
row initial value belief has a narrower optimal bid-ask spread. It
is also evident that the MM uses higher ask prices when the trader
population is comprised of a larger proportion of uninformed traders.
In summary, from Figure 3 we can clearly see that the MM sets its
bid and ask prices based on its initial beliefs, characteristics of the
trader population and inventory levels.

6.4 Trader Models
In the previous two experiments we showed how the optimal se-

quential market-making model presented in this paper can be used
to calculate sequentially optimal and inventory sensitive policies,
the two major contributions to algorithmic market-making. In this

54

[0, 49]

[0, 99]

[0, 75]

sell

[0, 99]buy

[0, 99]
hold

[0, 75]

[0, 99]

[0, 51]

[0, 51]

[0, 51]

hold

buy

sell

[0, 51]

[0, 75]

buy

hold

[0, 75]

sell

buy

sell

hold

Figure 2: Sequentially optimal policy for an initial belief of
〈{U [0.0, 50.0], U [50.0, 100.0]} , 1.0〉. Nodes represent actions a ∈ A
and arrows represent an observation o ∈ O. The MM selects bid
and ask prices adaptively based on the trader’s actions while simul-
taneously bounding inventory.

-1 0 1 2
0

10

20

30

40

50

60

70

80

90

100

110
bid

1
ask

1
bid

2
ask

2

(a) Initial value belief of v ∼ U [0.0, 100.0].

-1 0 1 2
0

10

20

30

40

50

60

70

80

90

100

110
bid

1
ask

1
bid

2
ask

2

(b) Initial value belief of v ∼ U [49.0, 51.0].

Figure 3: Optimal bid and ask prices under different market set-
tings. The initial inventory level i ∈ {0, 1, 2}. (bid1, ask1) and
(bid2, ask2) are the optimal prices for a trader population compris-
ing of 50% and 10% uninformed traders, respectively. In critically
low inventory settings it is important for the MM to set bid and ask
prices based on its beliefs and characteristics of the trader popula-
tion.

experiment we demonstrate the flexibility of the model by examin-
ing the affect of different trader models on the MM’s optimal bid
and ask prices. In Figure 4 we present the optimal α-functions of
our MM operating within the Glosten Milgrom and Discrete trading
model with an initial belief of 〈{U [0.0, 50.0], U [50.0, 100.0]} , 1.0〉

100
80

60

Mean

40
20

00

10

20

Width

30

40

50

40

20

30

80

70

60

50

Va
lu

e

[0.0, 50.0]
[0.0, 75.0]
[0.0, 100.0]

(a) Glosten Milgrom model.

(b) Discrete model.

Figure 4: Optimal α-functions for i = 1.0 under different trader
models. The upper surface of the plot indicates the optimal α-
function for the market-maker’s value belief defined by v ∼ U [m−
w,m + w], for a given mean m and width w. The policies of the
MM are complex and heavily dependent upon its beliefs.

andA =
{

(bid, ask)|(bid < ask), bid ∈ {0.0, 25.0, 50.0, 75.0} , ask ∈
{50.0, 75.0, 100.0}

}
.

In Figure 4a we can observe three distinct optimal actions in the
α-function plots. If we set the width to 0.0 and vary the mean, we
notice that [0.0, 100.0] exploits the actions of uninformed traders
who are equally likely to sell or buy . In the regions where [0.0, 50.0]

and [0.0, 75.0] are optimal, we note that as the mean increases above
the ask price, the MM is more likely to receive buy orders from an
informed trader. In Figure 4b we can see two interesting trends
with respect to the optimal actions. Firstly, when the MM is certain
about the value, they select actions with increasing ask prices. This
phenomenon also occurs when uncertainty about the mean value
increases. For example, when the MM becomes increasingly un-
certain about a mean value of 70.0, they use actions with a wider
bid-ask spread. From Figure 4 it is evident that models of trader
noise have a dramatic effect on the MM’s optimal actions. There-
fore, it is critical for a market-making model to be flexible with
regards to its reasoning about traders.

6.5 Time and Space Complexity
Figure 5 shows the relationship between horizonH, computation

time and space, measured in the total number of XADD nodes used
to represent α-function case statements, using a dynamic program-
ming model predictive control approach. It is clear that both time
and space requirements increase with H. The space requirement
increases at greater rate due to the increase in the number of ob-
servation partitions per α-function. This leads to a corresponding
increase in the computation time per Backup operation. Therefore,
sequentially optimal solutions for long horizons are computable us-
ing the novel continuous state POMDP formulation of sequential

55

Horizon
0 5 10 15 20 25 30

#106

0

0.5

1

1.5

2

2.5

3

3.5

4
Number of XADD Nodes
Time (ms)

Figure 5: Time and space (total number of XADD nodes) versus
horizon H.

market-making and closed-form SDP solution presented in previ-
ous sections.

7. RELATED WORK
This work has built on PBVI methods [13] for solving large

POMDPs by approximating the value function over a set of rep-
resentative reachable belief points. While PBVI has been well ex-
plored for the discrete state case, including symbolic extensions
using decision diagrams [18], much less work has focused on the
continuous state case. Three notable continuous state extensions
of PBVI include: (1) the seminal work by Porta et al [20] which
extends PBVI to the case of value functions which admit an exact
mixture of Gaussians representation; (2) a POMDP formalisation
used for Bayesian reinforcement learning [21] which examined the
case of value functions which admit a mixture of Dirichlets rep-
resentation; and (3) a Symbolic Dynamic Programming approach
to solving POMDPs with continuous observations but with highly
restricted piecewise constant reward and belief states [34]. In this
paper we present the first known closed-form PBVI solution for
an expressive class of continuous state POMDPs with discrete ob-
servations, piecewise linear transitions and rewards and arbitrary
belief state distributions.

8. CONCLUSIONS AND FUTURE WORK
In this paper, we have introduced the first optimal solution to se-

quential market-making with inventory based reasoning. We showed
that by formulating the market-making problem as a new subclass
of continuous state POMDPs, we substantially generalize the pre-
vious state of the art solution [26] by allowing more for more flex-
ibility in the definition of prior beliefs (arbitrary in our formula-
tion) and trader noise models, while also incorporating inventory
constraints and operating with a bounded loss. We also provide
a novel SDP solution, which allows us to solve this new subclass
of POMDPs, and not just a particular market-making problem, in
closed form.

There are a number of avenues for further research. Firstly, it is
important to explore more expressive representations of the under-
lying market microstructure model such as incorporating different
order sizes, their affect on market price and stealth trading by in-
formed traders [7]. Another possible extension is to learn trader
models from the order stream by using continuous extensions of
Bayesian reinforcement learning methods for POMDPs [21]. In an
orthogonal direction, we can explore POMDP Monte Carlo Tree
Search (MCTS) [28] alternatives to PBVI. Although MCTS can-
not guarantee lower bound policies like PBVI does, it may scale
to larger and more complex POMDPs. These extensions may then

be used collectively to model and solve optimal sequential market-
making in more complex financial domains. In summary, the mod-
elling and algorithmic contributions in this work opens up an en-
tirely new way to investigate market microstructure, trader noise
and inventory models in algorithmic sequential market-making.

References
[1] Benoit Mandelbrot. “The Variation of Certain Speculative

Prices”. In: The Journal of Business 36 (1963), p. 394.

[2] K. J. Aström. “Optimal Control of Markov Decision Pro-
cesses with Incomplete State Estimation”. In: Journal of Math-
ematical Analysis and Applications 10 (1965), pp. 174–205.

[3] Edward J. Sondik. “The Optimal Control of Partially Ob-
servable Markov Decision Processes”. PhD thesis. Palo Alto,
California, USA: Stanford University, 1971.

[4] Yakov Amihud and Haim Mendelson. “Dealership Market:
Market-making with Inventory”. In: Journal of Financial Eco-
nomics 8.1 (1980), pp. 31–53.

[5] George E. Monahan. “A Survey of Partially Observable Markov
Decision Processes: Theory, Models, and Algorithms”. In:
Management Science 28.1 (Jan. 1982), pp. 1–16.

[6] Lawrence R. Glosten and Paul R. Milgrom. “Bid, Ask and
Transaction Prices in a Specialist Market with Heterogeneously
Informed Traders”. In: Journal of Financial Economics 14.1
(1985), pp. 71–100.

[7] David Easley and Maureen O’Hara. “Price, trade size, and
information in securities markets”. In: Journal of Financial
Economics 19.1 (1987), pp. 69–90.

[8] Christos Papadimitriou and John N. Tsitsiklis. “The Com-
plexity of Markov Decision Processes”. In: Mathematics of
Operations Research 12.3 (Aug. 1987), pp. 441–450.

[9] Anthony R. Cassandra, Michael L. Littman, and Nevin Lian-
wen Zhang. “Incremental Pruning: A Simple, Fast, Exact
Method for Partially Observable Markov Decision Processes”.
In: Proceedings of the Thirteenth Conference Annual Con-
ference on Uncertainty in Artificial Intelligence. 1997, pp. 54–
61.

[10] Leslie Pack Kaelbling, Michael L. Littman, and Anthony
R. Cassandra. “Planning and Acting in Partially Observable
Stochastic Domains”. In: Journal of Artificial Intelligence
Research 101 (1998), pp. 99–134.

[11] Craig Boutilier, Ray Reiter, and Bob Price. “Symbolic Dy-
namic Programming for First-order MDPs”. In: Proceedings
of the Seventeenth International Joint Conference on Artifi-
cial Intelligence. 2001, pp. 690–697.

[12] Robin Hanson. “Combinatorial Information Market Design”.
English. In: Information Systems Frontiers 5.1 (2003), pp. 107–
119.

[13] Joelle Pineau, Geoffrey J. Gordon, and Sebastian Thrun. “Point-
based Value Iteration: An Anytime Algorithm for POMDPs”.
In: Proceedings of the Eighteenth International Joint Con-
ference on Artificial Intelligence. 2003, pp. 1025–1030.

[14] S. Joe Qin and Thomas A. Badgwell. “A Survey of Indus-
trial Model Predictive Control Technology”. In: Control En-
gineering Practice 11.7 (2003), pp. 733–764.

[15] Eric Smith et al. “Statistical Theory of the Continuous Dou-
ble Auction.” In: Quantitative Finance 3.6 (2003), pp. 481–
514.

56

[16] Didier Sornette. Why Stock Markets Crash: Why Stock Mar-
kets Crash: Critical Events in Complex Financial Systems.
Princeton University Press, 2004.

[17] Sanmay Das. “A Learning Market-Maker in the Glosten-
Milgrom Model”. In: Quantitative Finance 5.2 (2005), pp. 169–
180.

[18] Pascal Poupart. “Exploiting Structure to Efficiently Solve
Large Scale Partially Observable Markov Decision Processes”.
PhD thesis. Toronto: Department of Computer Science, Uni-
versity of Toronto, 2005.

[19] Johannes Volt. The Statistical Mechanics of Financial Mar-
kets. Theoretical and Mathematical Physics. Springer Ver-
lag, 2005.

[20] Josep M. Porta et al. “Point-Based Value Iteration for Con-
tinuous POMDPs”. In: Journal of Machine Learning Re-
search 7 (Dec. 2006), pp. 2329–2367.

[21] Pascal Poupart et al. “An Analytic Solution to Discrete Bayesian
Reinforcement Learning”. In: Proceedings of the Twenty-
Third International Conference on Machine Learning. 2006,
pp. 697–704.

[22] Y. Chen and D. Pennock. “A Utility Framework for Bounded-
loss Market Makers”. In: Proceedings of the Twenty-Third
Conference in Uncertainty in Artificial Intelligence. 2007,
pp. 49–56.

[23] Robin Hanson. “Logarithmic Market Scoring Rules for Mod-
ular Combinatorial Information Aggregation”. In: Journal of
Prediction Markets 1.1 (Feb. 2007), pp. 3–15.

[24] D. Pennock and R. Sami. “Algorithmic Game Theory”. In:
Cambridge University Press, 2007. Chap. Computational as-
pects of prediction markets.

[25] Sanmay Das. “The Effects of Market-Making on Price Dy-
namics”. In: Proceedings of the International Joint Confer-
ence on Autonomous Agents and Multi-Agent Systems. 2008,
pp. 887–894.

[26] Sanmay Das and Malik Magdon-Ismail. “Adapting to a Mar-
ket Shock: Optimal Sequential Market-Making”. In: Advances
in Neural Information Processing Systems 22. 2009, pp. 361–
368.

[27] Abraham Othman et al. “A Practical Liquidity-sensitive Au-
tomated Market Maker”. In: Proceedings of the Eleventh
ACM Conference on Electronic Commerce. 2010, pp. 377–
386.

[28] David Silver and Joel Veness. “Monte-Carlo Planning in Large
POMDPs”. In: Advances in Neural Information Processing
Systems 23. 2010, pp. 2164–2172.

[29] Tanmoy Chakraborty and Michael Kearns. “Market Making
and Mean Reversion”. In: Proceedings of the Twelfth ACM
Conference on Electronic Commerce. 2011, pp. 307–314.

[30] Scott Sanner, Karina Delgado, and Leliane Nunes de Barros.
“Symbolic Dynamic Programming for Discrete and Contin-
uous State MDPs”. In: Proceedings of the Twenty-Seventh
Conference on Uncertainty in Artificial Intelligence. 2011,
pp. 1–10.

[31] Aseem Brahma et al. “A Bayesian Market Maker”. In: Pro-
ceedings of the Thirteenth ACM Conference on Electronic
Commerce. 2012, pp. 215–232.

[32] Abraham Othman and Tuomas Sandholm. “Rational Market
Making with Probabilistic Knowledge”. In: Proceedings of
the Eleventh International Conference on Autonomous Agents
and Multiagent Systems. 2012, pp. 645–652.

[33] Zahra Zamani and Scott Sanner. “Symbolic Dynamic Pro-
gramming for Continuous State and Action MDPs”. In: Pro-
ceedings of the Twenty-Sixth AAAI Conference on Artificial
Intelligence. 2012, pp. 1–7.

[34] Zahra Zamani et al. “Symbolic Dynamic Programming for
Continuous State and Observation POMDPs”. In: Advances
in Neural Information Processing Systems 25. 2012, pp. 1394–
1402.

57

Multiplayer Ultimatum Game in Populations of
Autonomous Agents

Fernando P. Santos,
Francisco C. Santos

INESC-ID and Instituto Superior Técnico,
Universidade de Lisboa

Taguspark, Av. Prof. Cavaco Silva
2780-990 Porto Salvo, Portugal

{fernando.pedro,franciscocsantos}@ist.utl.pt

Francisco S. Melo,
Ana Paiva

INESC-ID and Instituto Superior Técnico,
Universidade de Lisboa

Taguspark, Av. Prof. Cavaco Silva
2780-990 Porto Salvo, Portugal

{fmelo,ana.paiva}@inesc-id.pt

Jorge M. Pacheco
CBMA and Departamento de Matemática e

Aplicações, Universidade do Minho
Campus de Gualtar

4710-057 Braga, Portugal
jmpacheco@math.uminho.pt

ABSTRACT
There are numerous human decisions and social preferences
whose features are not easy to grasp mathematically. Fair-
ness is certainly one of the most pressing. In this paper,
we study a multiplayer extension of the well-known Ulti-
matum Game through the lens of a reinforcement learning
algorithm. This game allows us to study fair behaviors be-
yond the traditional pairwise interaction models. Here, a
proposal is made to a quorum of Responders, and the over-
all acceptance depends on reaching a threshold of individual
acceptances. We show that, while considerations regard-
ing the sub-game perfect equilibrium of the game remain
untouched, learning agents coordinate their behavior into
different strategies, depending on factors such as the group
acceptance threshold, the group size or disagreement costs.
Overall, our simulations show that stringent group criteria
trigger fairer proposals and the effect of group size on fair-
ness depends on the same group acceptance criteria. Fair-
ness can be boosted by the imposition of disagreement costs
on the Proposer side.

1. INTRODUCTION
The role of fairness in decision-making has for long cap-

tured the attention of academics and the subject comprises
a fertile ground of multidisciplinary research [9, 10]. In this
context, the Ultimatum Game (UG), proposed more than
thirty years ago, stands as a simple interaction paradigm
that is capable of capturing the essential clash between ra-
tionality and fairness [12]. In its original form, two players
interact acquiring two distinct roles: Proposer and Respon-
der. The Proposer is endowed with some resource and has
to propose a division to the second player. After that, the
Responder has to state her acceptance or rejection. If the
proposal is rejected, none of the players earns anything. If
the proposal is accepted, they will divide the resource as
it was proposed. A fair outcome is usually defined as an
egalitarian division, in which both the Proposer and the Re-
sponder earn a similar reward.

The minimalism of this game is convenient to allow a

mathematical treatment that aims at computing the most
probable outcome in which humans will end up, while play-
ing it. A first approach would be to look into each agent as
being rational and oriented to the maximization of rewards.
Thinking in a backward fashion, one may realize that the Re-
sponder should always accept any offer; the Proposer, confi-
dent about this reasonable reaction, should always propose
to give the minimum possible amount to the Responder. In-
deed, this line of thought gives an intuition for the sub-game
perfect equilibrium of the UG: low offers by Proposers and
low acceptance thresholds by Responders [19]. These pre-
dictions regarding how people act are, however, misleading.
A vast number of works report experiments with people in
which they behave very differently from the rational sub-
game prediction [23, 12, 30]. Humans tend to reject low
proposals, i.e., they have high thresholds of acceptance and
they tend to offer fair divisions. The explanations for this
fact diverge. Some authors argue that the Proposers have a
natural propensity to be fair; others suggest that they fear to
have a proposal rejected [30]. Interestingly, humans keep ex-
hibiting fair preferences in dictator games, where a proposal
is always accepted no matter what is the Responder opin-
ion [10], a behavior that can be explained by reciprocity-like
mechanisms [13].

The mathematical treatment of this game followed the
need to come up with different predictions, other than the
game theoretical sub-game perfect equilibrium. Why is that
it pays for individuals to reject low proposals and offer high
ones? How to explain the evolution of this behavior mathe-
matically? Resorting to evolutionary game theoretical tools,
Nowak et. al. suggested that if Proposers are able to get
pieces of information about previous actions of the oppo-
nents, then it is worth for the Responders to cultivate a
fierce reputation [18]. This way, Proposers would offer more
to Responders that are used to reject low offers and it nat-
urally leads the Responders to nurture an intransigent rep-
utation by rejecting unfair offers. Other models attribute
the evolution of fairness to the repetition of interactions [33]
or empathy [21]. A slightly different approach suggests that

58

fair Proposers and Responders may emerge due to the topo-
logical arrangement of their network of contacts: if individ-
uals are arranged in lattices [22, 28] clusters of fairness may
emerge. Also using learning frameworks, a lot of attention
was given to the UG [11, 6, 5]. For a neat work that com-
bines learning agents (that play UG) with complex networks,
volunteering and reputation we refer to De Jong et al. [6].

Any mathematical explanation (and/or prediction) for hu-
man behavior in the UG holds as a fundamental result of
clear importance in areas as evolutionary biology, economics
or philosophy. In Artificial Intelligence specifically, these
advancements provide an important asset for the design of
artificial agents and the simulation of artificial societies, in
terms of i) performance, ii) expectation and iii) accuracy : i)
artificial agents that do incorporate features of human-like
behavior when playing the UG are agents capable of per-
forming better (a purely selfish agent that always offers close
to nothing to a human Responder will naturally be doomed
to a hopeless performance) [5, 15]; ii) artificial agents play-
ing with humans in UG-like interactions are naturally more
believable and enjoyable if they exhibit human preferences
as they will meet their opponents expectation; iii) models
based on the simulation of artificial societies that seek to
predict the impact of policies on aggregate behavior and
emergent outcomes [29], will be more accurate if they in-
clude the appropriate mathematical assumptions regarding
human behaviors; in this case, the proper feelings towards
fairness and unfairness.

While these stand as important criteria for the case of
agents playing the two-player UG, the same apply to a wide
range of human-agent interactions that a pairwise interac-
tion model does not enclose. It is perfectly straightforward
to realize that also UG instances take place in groups, with
proposals being made to assemblies [25]. Take the case
of pervasive democratic institutions, economic and climate
summits, collective bargaining, markets, auctions, or the an-
cestral activities of proposing divisions regarding the loot of
group hunts and fisheries. All those examples go beyond a
pairwise interaction. Indeed, there is a growing interest in
doing experiments with multiplayer versions of the UG [11,
9, 16, 7]. A simple extension may turn it adequate to study
a wide variety of ubiquitous formats of people encounters.
This extension, the Multiplayer UG (MUG), allows to study
the traditional 2-person UG in a context where proposals are
made to groups and the groups should decide, through suf-
frage, about its acceptance or rejection.

In the context of this game, if we want to fulfill the previ-
ous criteria, some immediate answers need to be addressed:
what is the role of group in the individual decisions? What
is the impact of group acceptance rules on individual offers?
What is the role of group size on fairness?

In this paper we provide a model to approach those an-
swers, by combining MUG with agents that learn how to
play it through reinforcement learning [27]. We test the
well-known Roth-Erev algorithm [23]. We show that there
is a set of parameters (group size, decision rule, disagreement
costs) that are relevant given the setting of MUG and that
provide non-trivial effects regarding the learned strategies.

We start by reviewing the equilibrium notions of classi-
cal game theory, namely, the sub-game perfection. We show
that the above game parameters are irrelevant regarding the
equilibrium approach. Notwithstanding, they deeply affect

the learned behaviors, with serious impacts on group fair-
ness.

Table 1: Glossary
Symbol Meaning

p Offer by Proposer
q Acceptance threshold of Responder

ΠP (pi, q−i) Payoff earned by a Proposer
ΠR(pj , q−j) Payoff earned by a Responder

Π(pi, qi, p−i, q−i) Payoff being Proposer and Responder
api,q−i Group acceptance flag
d Disagreement cost

Q(t) Propensity matrix at time t
λ Forgetting rate
ε Local experimentation

ρki(t) Probability that k uses strategy i
p̄ Average p population-wide
ip,q Integer representation of strategy (p, q)
R Number of runs
Z Population size
N Group size
M Group acceptation threshold
T Number of time steps
R Number of runs

2. MULTIPLAYER ULTIMATUM GAME
In the typical pairwise UG, a Proposer receives a sum and

decides the fraction (p) that should offer to a Responder.
The Responder must then state her acceptance or rejection.
This decision can rely on a personal threshold (q), which is
used to decide about acceptance or rejection: if p ≥ q the
proposal is accepted and if p < q, the proposal is rejected.
Considering that the amount being divided sums to 1, if
the proposal is accepted the Proposer earns 1 − p and the
Responder earns p. If the proposal is rejected, none of the
individuals earn anything [18].

This two-person game can now be extended to an N-
person game, assuming the existence of a quorum of N − 1
Responders. Again, a proposal is made (p), yet now each of
the Responders states acceptance of rejection and the over-
all acceptance depends on an aggregation of these individual
decisions: if the number of acceptances equals or exceeds a
threshold M , the proposal is accepted by the group. In this
case, the Proposer keeps what she did not offer (1− p) and
the offer is evenly divided by all the Responders (p/(N−1));
otherwise, if the number of acceptances remains below M ,
the proposal is rejected by the group an no one earns any-
thing.

The payoff function describing the gains of a Proposer
i, with strategy pi, facing a quorum of Responders with
strategies q−i = {q1, ..., qj , ..., qN−1}, j 6= i reads as

ΠP (pi, q−i) = (1− pi)api,q−i (1)

Where api,q−i summarises group acceptance of the proposal
made by agent i, pi, standing as

api,q−i =

{
1, if

∑
qj∈q−i

Θ(pi − qj) ≥M.

0, otherwise.
(2)

Θ(x) is the Heaviside unit step function, having value 1

59

whenever x ≥ 0 and 0 otherwise. This way, Θ(pi − qj) = 1
if agent j accepts agent’s i proposal.
Similarly, the payoff function describing the gains of a Re-
sponder belonging to a quorum with a strategy profile q−j =
{q1, ..., qk, qi, ..., qN−1}, k 6= j, listening to a Proposer j with
strategy pj , is given by

ΠR(pj , q−j) =
pj

N − 1
apj ,q−j (3)

Assuming that these games take place in groups where each
individual acts once as a Proposer (in turns and following
a round robin fashion), the overall payoff of an individual
with strategy (pi, qi), playing in a group where opponent
strategies are summarised in the strategy profile (p−i, q−i),
is given by,

Π(pi, qi, p−i, q−i) = ΠP (pi, q−i) +
∑

pj∈p−i

ΠR(pj , q−j) (4)

The interesting values of M range between 1 and N − 1. If
M < 1 all proposals would be accepted and having M >
N − 1 would dictate unrestricted rejections. If N = 2 and
M = 1, payoff function above reduces to

Π(p1, q1, p2, q2) =





1− p1 + p2, if p1 ≥ q2 and p2 ≥ q1.
1− p1, if p1 ≥ q2 and p2 < q1.

p2, if p1 < q2 and p2 ≥ q1.
0, if p1 < q2 and p2 < q1.

(5)
recovering the traditional 2-person UG, described above [12,
18, 22].

MUG has interesting connections with typical N-person
cooperation games, namely the ones with thresholds [24,
20, 25]. Indeed, defining altruistic cooperation as giving a
benefit to the other incurring in a cost, we may say that
a Proposer has a cost of p in order to provide a benefit of
p/(N − 1) to the Responders. This way, fair proposals are
cooperative gestures. Comparing with typical Public Good
Games (PGG) with thresholds, in MUG i) we have a zero-
sum game in which the multiplication factor is 1, promoting
an unfavourable scenario for cooperation to thrive; ii) the
threshold that dictates a successful proposal is endogenously
imposed by each Responder; iii) individual offers, instead of
group achievement, are the subject of suffrage and iv) the
risk of failure, when a proposal does not comply with group
threshold, is 1.

We further include a disagreement cost payed by the Pro-
poser when her offer is rejected, that resembles an opportu-
nity cost, the psychologic cost of having a proposal rejected
or even the environmental cost of not reaching an agree-
ment. When explicitly stated, this disagreement cost (d)
affects Eq.(1) following

ΠP (pi, q−i) = (1− pi)api,q−i − d(1− api,q−i) (6)

2.1 Sub-game perfect equilibrium
To predict the outcome of the game previously introduced,

we start by doing a typical equilibrium analysis. In this case,
the predictions regarding Nash Equilibria (i.e., a strategy
profile from which no player has interest in deviating alone)
can be misleading, as those are well suited for non-sequential
games. In sequential extensive form games, as MUG, the
strategy profiles that are robust (i.e., that players looking

forward to maximize utility will stick with) can be provided
by the notion of the sub-game perfect equilibrium [19].

Let us first introduce some canonical notation. The game
given in a sequential form has a set of stages in which a
specific player (chosen by a player function) should act. A
history stands as any possible sequence of actions, given the
turns assigned by the player function. Roughly speaking, a
terminal history is a sequence of actions that go from the
beginning of the game until an end, after which there are
no actions to follow. Each terminal history will prescribe
different outcomes to the players involved, given a specific
payoff structure that fully translates the preferences of the
individuals.

A sub-game is (again, a game) composed by the set of
all possible histories that may follow a given non-terminal
history. Informally, a sub-game is the game yet to play,
after a given sequence of actions already performed by the
players. A strategy profile is a sub-game perfect equilibrium
if it also the Nash equilibrium of every sub-game, i.e., a
Nash equilibrium of the sub-games that follow any possible
sequence of actions (non-terminal histories).

Let us turn to the specific example of MUG to clarify this
idea. In this game, the player function dictates that the
Proposer does the first move and, after that, the Responders
should state acceptance or rejection. The game has two
stages and any terminal history is composed by sets of two
actions, one taken by a single individual (Proposer, that may
suggest any division of the resource) and the second by the
group (acceptance or rejection).

Picture the scenario in which groups consist in 5 play-
ers, where one is the Proposer, the other 4 are the Re-
sponders and M=4 (different M would lead to the same
conclusions). Let us evaluate two possible strategy profiles:
s1 = (0.8, 0.8, 0.8, 0.8, 0.8) and s2 = (µ, 0, 0, 0, 0), where the
first value is the offer by the Proposer and the remaining
4 are the acceptance thresholds by the Responders. Both
strategy profiles are Nash Equilibria of the whole game. In
the first case, the Proposer does not have interest in devi-
ating from 0.8: if she lowers this value, the proposal will be
rejected and thus she will earn 0; if she increases the offer,
she will keep less to herself. The same happens with the
Responders: if they increase the threshold, they will earn
0 instead of 0.2, and if they decrease it, nothing happens
(non-strict equilibrium). The exact same reasoning can be
made for s2, assuming that µ/(N−1) is the smallest possible
division of the resource.

Regarding sub-game perfection, the conclusions are dif-
ferent. Assume the history in which the Proposer has cho-
sen to offer µ (let’s call the sub-game after this history, in
which only one move is needed to end the game, h). In
this case, the payoff yielded by s1 is (0, 0, 0, 0, 0) (every Re-
sponder rejects a proposal of µ) and the payoff yielded by
s2 is (1 − µ, µ/(N − 1), µ/(N − 1), µ/(N − 1), µ/(N − 1)).
So it pays for the Responders to choose s2 instead of s1,
which means that s1 is not a Nash Equilibrium of the sub-
game h. Indeed, while any strategy profile in the form s =
(p, p, p, p, p), µ < p ≤ 1 is a Nash Equilibrium of MUG, only
s∗ = (µ, 0, 0, 0, 0) is the sub-game perfect equilibrium. As
described in the introductory section, a similar conclusion,
yet simpler and more intuitive, could be reached through
backward induction.

This sub-game perfect equilibrium prescribes a payoff of
1−µ to the Proposer and µ/N to the Responder, therefore,

60

in terms of fairness, the scenario is dark. In real life, indi-
viduals do not play this way. Would artificial agents learn
sub-game perfection or would they learn to behave fair as
humans?

3. LEARNING MODEL
We use the Roth-Erev algorithm [23] to analyse the out-

come of a population of learning agents playing MUG in
groups of size N . In this algorithm, at each time-step t, each
agent k is defined by a propensity vector Qk(t). This vec-
tor will be updated considering the payoff gathered in each
play. This way, successfully employed actions will have high
probability of being repeated in the future. We consider
that games take place within a population of size Z > N
of adaptive agents. To calculate the payoff of each agent,
we sample random groups without any kind of preferential
arrangement (well-mixed assumption). We consider MUG
with discretised strategies. We round the possible values
of p (proposed offers) and q (individual threshold of accep-
tance) to the closest multiple of 1/D, where D measures the
granularity of the strategy space considered. We map each
pair of decimal values p and q into an integer representation,
thereafter ip,q is the integer representation of strategy (p, q)
and pi (or qi) designates the p (q) value corresponding to
the strategy with integer representation i.

The core of the learning algorithm takes place in the up-
date of the propensity vector of each agent, Q(t+ 1), after a
play at time-step t. Denoting the set of possible actions by
A, ai ∈ A : ai = {pi, qi} and the population size by Z, the

propensity matrix, Q(t) ∈ RZ×|A|+ is updated following the
base rule

Qki(t+ 1) =

{
Qki(t) + Π(pi, qi, p−i, q−i) if k played i

Qki(t) otherwise

(7)
The above update can be enriched with human learning fea-
tures: forgetting rate (λ, 0 ≤ λ ≤ 1) and local experimenta-
tion, (ε, 0 ≤ ε ≤ 1) [23], leading to an update rule slightly
improved,

Qki(t+1) =





Qki(t)λ̄+ Π(pi, qi, p−i, q−i)(1− ε) k played i

Qki(t)λ̄+ Π(pi, qi, p−i, q−i) ε4 k pl. ip ± 1

Qki(t)λ̄+ Π(pi, qi, p−i, q−i) ε4 k pl. iq ± 1

Qki(t)λ̄ otherwise

(8)
where λ̄ = 1 − λ and ip ± 1(iq ± 1) corresponds to the in-
dex of the p (q) values of the strategies adjacent to pi (qi),
naturally depending on the discretisation chosen. The in-
troduction of local experimentation errors is convenient as
they prevent the probability of playing less used strategies
(however close to the used ones) from going to 0. Moreover,
those errors may introduce the spontaneous trial of novel
strategies, a feature that is both human-like and showed to
improve the performance of autonomous agents [26]. The
forgetting rate is convenient to inhibit the entries of Q to
grow without bound: when the propensities reach a certain
value, the magnitude of the values forgotten, Qki(t)λ, ap-
proach those of the payoffs being added, Π(pi, qi, p−i, q−i).
All together, the individual learning algorithm can be intu-
itively perceived: when individual k uses strategy i she will
reinforce the use of that strategy provided the gains that
she obtained; higher gains will increase more the probabil-

ity of using that strategy in the future. The past use of the
remaining strategies, and the obtained feedbacks, will be for-
gotten over time; The similar strategies to the one employed
(which in the case of MUG are just the adjacent values of
proposal and acceptance threshold) will also be reinforced,
yet to a lower extent.

When an agent is called to pick an action, she will do so
following the probability distribution dictated by her nor-
malised propensity vector. The probability that individual
k picks the strategy i at time t is given by

ρki(t) =
Qki(t)∑
nQni(t)

(9)

The initial values of propensity, Q(0), have a special role in
the convergence to a given propensity vector and on the
exploration versus exploitation dilemma. If the norm of
propensity vectors in Q(0) is high, the initial payoffs ob-
tained will have a low impact on the probability distribu-
tion. Oppositely, if the norm of propensity vectors in Q(0) is
small, the initial payoffs will have a big impact on the prob-
ability of choosing the corresponding strategy again. Con-
vergence will be faster if the values in Q(0) are low, yet in
this case agents will not initially explore a wide variety of
strategies.

Additionally, we consider a modified probability distribu-
tion that takes the form of a Gibbs-Boltzmann probability
distribution. This distribution will be useful to introduce
negative payoffs, occurring when we include disagreement
costs (see Section 2).

ρki(t) =
eQki(t)/τ

∑
n e

Qkn(t)/τ
(10)

Parameter τ corresponds to a temperature: low values will
highlight the differences in propensity values in the corre-
sponding probability distribution, while high values will in-
troduce stochasticity by softening the effect of the propen-
sities on the probability of choosing a given action.

Algorithm 1: Roth-Erev reinforcement learning al-

gorithm in an adaptive population and considering

synchronous update of propensities.

Q(0)←random initialisation;

for t← 1 to T, total number of time-steps do

tmp← {0, ..., 0} /* keeps the temporary

payoffs of the current generation to

allow for synchronous update of

propensities */;

for k ← 1 to Z do
1. pick random group with individual k ;

2. collect strategies (Eq. 9,10);

3. calculate payoff of k (Eq. 4);

4. update tmp[k] with payoff obtained ;

update Q(t) given Q(t− 1) and tmp (Eq. 8);

save p̄ (Eq. 11);

save q̄ (Eq. 11);

61

As said, we consider a population of Z learning agents.
Propensities will be synchronously updated after each time-
step (t). In a time-step, every agent plays once in a randomly
assembled group. A general view over the learning algorithm
is provided in Algorithm 1. After each t, we keep track of
the average values of p and q in the population, designating
them by p̄ and q̄. Provided a propensity matrix, they are
calculated as

p̄ =
1

Z

∑

1<k<Z

∑

1<i<|A|
ρkipi

q̄ =
1

Z

∑

1<k<Z

∑

1<i<|A|
ρkiqi (11)

The learning algorithm employed is rather popular [8, 23],
providing a representative form of individual based learn-
ing. Other algorithms, such as Q-learning [31, 3], Learning
Automata [17, 6] or Cross Learning [4, 1], can be similarly
employed [2]. In the scope of this work, a simple stateless
formulation Q-learning can be used [3], whereby the update
of propensities follows the rule

Qki(t+ 1) =

{
Qki(t) + α(Π−Qki(t)) if k played i

Qki(t) otherwise
(12)

where α stands for the learning rate and Π is used as a sim-
plification for Π(pi, qi, p−i, q−i). Learning Automata implies
the direct update of the own action usage probabilities (in-
stead of updating an intermediary propensity vector). Using
this method, the probabilities of using each strategy a are
updated, from t to t− 1, according to

ρki(t+ 1) =

{
ρki(t) + αΠ(1− ρki(t)) if k played i

ρki(t)− αΠρki(t) otherwise
(13)

A comparison between each of these algorithms, in the con-
text of autonomous agents interacting through MUG, is cur-
rently under progress.

4. RESULTS AND DISCUSSION
Through the simulation of the multiagent system described

in the previous section, we first show that different group de-
cision thresholds have a considerable impact on the average
values of offers (p) and acceptance thresholds (q) learned by
the population. As the time-series in Figure 1 show, both for
M = 1 and M = 4 (the extreme cases when the group size is
5), agents learn the strategies that allow them to maintain
high acceptance rates and high average payoffs. Notwith-
standing, the offered values when M = 4 are fairer than the
ones learned when M = 1. An average p of 0.2 (M = 1)
endows Proposers with an average payoff of 0.8, while each
Responder keeps 0.05. Oppositely, an average value of p
close to 0.6 provides the equalitarian outcome of endowing
Proposers with 0.4 and Responders with 0.15. If one as-
sumes that the role of Responder will be played (N − 1)
times often, then Responders earn 0.2 for M = 1 and 0.6 for
M = 4 and here indeed, the group decision criteria is enough
to even provide an advantage for Responders. Recall that
sub-game perfect equilibrium always predicts that Proposers
would keep all the sum and Responders would earn 0.
To have a better intuition for the distribution of strategies

within a population, we take a snapshot, for a specific run, of

N=5, M=1

N=5, M=4

rejection rateqppayoff

time step (t)
0 2000 8000

0 2000 8000

1

0.5

0

1

0.5

0

__

Figure 1: Time series reporting the evolution of av-
erage strategies (p̄ and q̄), average payoff population-
wide and proposals rejection rate. Each plot corre-
sponds to the average over various runs, each start-
ing with a random propensity matrix where each
entry is sampled from a uniform distribution from
0 to Q(0)max. For group size N = 5 and for the ex-
treme cases of threshold M (M = 1, M = 4), the
rejection rate converges to a value near the mini-
mum, thereby, the average payoff in the population
approximates the maximum possible. Other param-
eters: population size Z = 50, granularity D = 20,
forgetting rate λ = 0.01, local experimentation rate
ε = 0.01, total number of time-steps T = 10000, num-
ber of runs R = 50, disagreement cost d = 0, initial
propensities maximum Q(0)max = 50.

the population distribution over the space of possible p and
q values for time-steps t = 0, t = 2000 and t = 8000. The
corresponding results are pictured in Figure 2. Each square
corresponds to a pair (p, q) and a darker square means that
more agents have a propensity vector whose average strat-
egy stands in that position. Figure 2 shows that, over time,
agents learn to use a p value that grows with M . Concern-
ing q, the learned values have a sizeable variance within the
same population. This variance decreases with M . The rea-
soning for this result is straightforward: as M increases, a
proposal is only accepted if more Responders accept it. In
the limiting case of M = N − 1, all Responders have to
accept an offer in order for it to be accepted by the group,
thereby, the pressure for having low acceptance thresholds,
q, is high. When M is low, a lot of q in the group of Respon-
ders turn to be irrelevant. If M = 1, a single Responder is
enough to accept a proposals and thereafter, all the other q
values in the group do not need to be considered. In this
case, the pressure for q values to converge to confined do-
main is softened.

62

p
N=5, M=1

N=5, M=4

q

t=0 t=2000 t=8000

p

q

t=0 t=2000 t=8000

10

1

10

1

Figure 2: Snapshots of the population composition
regarding the average values of p and q to be played
given Q(t). Each plot represents the space of all pos-
sible combination of p and q, assuming that D = 20
and thereby, p and q are rounded to the closest mul-
tiple of 1/D. We represent the state of the popula-
tion for three distinct time-steps (t = 0, t = 2000 and
t = 8000) and given two values of threshold M , M = 1
and M = 4 (group size N = 5). The time location of
these snapshots is represented in Figure 1 by means
of vertical dashed lines. Each square within the 2D-
plots represents a specific combination of (p, q). If
the square is darker it means that more individuals
of the population play, on average, with a strategy
corresponding to that location. For accessing other
fixed parameters, see the caption of Figure 1.

The relation between M and within population strategy
variance is further evidenced in Figure 3. Here we plot the
average values of p and q, taken as the time average after
a transient period of half of the total time-steps, T . The
error bars represent the average (over time) of the standard
deviation of the p and q values within the population. The
standard deviation of q is clearly high and it decreases with
M . Also here, the effect of stringent group acceptation cri-
teria is evident, in what concerns the learning of being a fair
Proposer.

The effect of M can even be leveraged if we include dis-
agreement costs (d). As Figure 4 shows, increasing the cost
that a Proposer incurs in when the quorum of Responders
rejects a proposal has the effect of increasing the values pro-
posed. Once again, if we followed the prediction stemming
from sub-game perfection (Section 2.1) we would not take
into account the possible effects of a disagreement cost. If
we considered that all the proposals were to be accepted by
the Responders, the Proposer would never fear the disagree-
ment cost, and this parameter would be innocuous.

Finally, we highlight the effect of group size (N), on the
average value of proposals made and proposals willing to be
accepted. As Figure 5 depicts, larger groups induce indi-

p

●
●

●
●

●
●

0 1 2 3 4 5 6 7
0.0

0.2

0.4

0.6

0.8

●
●

● ● ●
●

0 1 2 3 4 5 6 7
0.0

0.2

0.4

0.6

0.8

q

N=7

M

0.8

0

0.2

0.6

0.4

0.8

0

0.2

0.6

0.4

1 2 3 4 65

Figure 3: The average values of p and q for group
size N = 7 with M assuming all possible non-trivial
values 1 ≤ M ≤ N − 1. Each point corresponds to
a time and ensemble average: i) time average over
the last half of the time-steps, i.e., we wait for a
transient time for propensity values to stabilise and
ii) we take the average of 50 runs, each one starting
from a random Q(0) propensity matrix. For other
parameters, see caption of Figure 1.

p

●

●

●
●

●
●

■

■
■

■
■

■

◆

◆

◆

◆

◆

◆

▲

▲

▲

▲

▲

▲

▼

▼

▼

▼

▼

▼

1 2 3 4 5 6
0.2

0.4

0.6

0.8

1.0

● ●
● ●

● ●

■ ■ ■
■ ■ ■

◆ ◆ ◆ ◆ ◆ ◆
▲ ▲ ▲

▲ ▲ ▲
▼ ▼

▼ ▼ ▼ ▼

1 2 3 4 5 6
0.2

0.4

0.6

0.8

1.0

q

N=7

M
1 2 3 4 5 6

0.2

0.4

0.6

0.8

1.0

0.2

0.4

0.6

0.8

1.0
d=0

d=0.2
d=0.4
d=0.6
d=0.8

Figure 4: The effect of disagreement const, d, on the
adopted values of p and q, for different M . Due to
the possibility of having negative payoffs, this is the
only scenario where the probabilities of selecting a
given action are given by Eq. (10) instead of Eq.
(9). We used τ(t) = τ/t and τ = 104. For other
parameters, see caption of Figure 1.

viduals to rise their average acceptance threshold. It is rea-
sonable to assume that, as the group of Responders grows

63

●

●
●

● ● ● ● ● ● ● ● ● ●

■
■

■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■

2 4 6 8 10 12
0.0

0.2

0.4

0.6

0.8

1.0

●
● ● ● ● ● ● ● ● ● ● ● ●

■

■
■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■

2 4 6 8 10 12
0.0

0.2

0.4

0.6

0.8

1.0

●
● ● ● ● ● ● ● ● ● ● ● ●

■
■

■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■

2 4 6 8 10 12
0.0

0.2

0.4

0.6

0.8

1.0

Unanimity to Accept
M=N-1

N
4

Majority
M=(N-1)/2

Unanimity to Reject
M=1

8 12 16 20 240

0.2

0.4

0.6

0.8

1.0

0

0.2

0.4

0.6

0.8

1.0
0

0.2

0.4

0.6

0.8

1.0
p
q

Figure 5: Average values of p and q for different
combinations of group sizes, N , and group deci-
sion criteria, M . Other parameters: population size
Z = 50, granularity D = 20, forgetting rate λ = 0.01,
local experimentation rate ε = 0.01, total number of
time-steps T = 10000, number of runs R = 50, dis-
agreement cost d = 0, initial propensities maximum
Q(0)max = 50.

and as they have to divide the offers between more individ-
uals, the pressure to learn optimal low q values is alleviated.
This way, the values of q should increase, on average, ap-
proaching the 0.5 barrier that would be predicted if they
behaved erratically. Differently, the proposed values exhibit
a dependence of the group size that is conditioned on M .
For mild group acceptance criteria (low M), having a big
group of Responders is synonym of having a proposal easily
accepted. In these circumstances, Proposers tend to offer
less without risking having their proposals rejected, keeping
this way more for themselves and exploiting the Responders.
Oppositely, when groups agree upon stricter acceptance (val-
ues of M that, as Figure 5 shows, can go from majority to
unanimity), having a big group of Responders means that
more persons need to be convinced of the advantages of a
proposal. This way, Proposers have to adapt, increase the
offered values and sacrifice their share in order to have their
proposals accepted. We tested these results for values of lo-
cal experimentation error (ε) and forgetting rate (λ) in the
set {0.001, 0.005, 0.01, 0.05, 0.1}. While high values of ε and
λ lead to a slight decrease in the average values of p and
increase in q, the conclusions regarding the effects of M , N

and d remain the same. We additionally tested for N = 7,
M = 1, 3, 6 and Z = 20, 30, 50, 100, 200, 300, 500 and verified
that the conclusions regarding the effect of M remain valid
for the considered population sizes.

5. CONCLUSION
We are all part of large multi-agent systems and our pref-

erences are (also) the result of adaptation and response within
those systems. The path taken during that adaptive process
may disembogue in nontrivial behaviors. Being fair is an ex-
ample. Why and how did we end up being fair are questions
that may never be fully answered, however, trying to do so
turns to be paramount if we want to understand societies
and design fruitful institutions. The mathematical or com-
putational apprehension of fairness turns to be extremely
relevant in the contemporary digital societies. More than
being part of human multi-agent systems, we are today in-
teracting with artificial agents. Take the example of auto-
matic negotiation [14, 15]. What would be the requirements
of artificial agents designed to negotiate with a human in an
environment that is surely dynamic? Should they behave
assuming human rationality and predicting sub-game per-
fect equilibrium (see Section 2.1)? Should they learn with
the dynamics of the environment and opponents?

We employ a reinforcement learning algorithm to shed
light on the role of decision rules, group size and disagree-
ment costs. We model an adaptive population in which
learning agents shape both their propensities and ergo, op-
ponents’ playing environment. We show that increasing the
group acceptation threshold has the effect of increasing the
offered values and decreases the acceptance thresholds. The
imposition of disagreement costs, to be paid by the Pro-
posers in case of having a proposal rejected, even helps to
leverage group fairness. Moreover, the effect of group size
depends on the group decision rule: big groups combined
with soft group criteria are a fertile ground for selfish Pro-
posers to thrive. Oppositely, big groups that require una-
nimity to accept a proposal, by being strict in accepting low
proposals, induce Proposers to offer more.

The individual learning model that we implement is close
to a trial and error mechanism that individuals may use to
successively adapt to the environment, given the feedback
provided by their own actions. A different approach imple-
ments a system of social learning [25], in which individuals
learn by observing the strategies of others and accordingly
imitate the strategies perceived as best. These two learning
paradigms (individual and social) can lead to very different
outcomes, concerning the learned strategies and the long-
term behaviour of the agents [32]. Interestingly, our results
(besides providing new intuitions regarding the role of dis-
agreement costs and group size in MUG) are in line with
some of the results obtained in the context of evolutionary
game theory and social learning [25].

Acknowledgments
This research was supported by Fundação para a Ciência
e Tecnologia (FCT) through grants SFRH/BD/94736/2013,
PTDC/EEI-SII/5081/2014, PTDC/MAT/STA/3358/2014 and
by multi-annual funding of CBMA and INESC-ID (under
the projects UID/BIA/04050/2013 and UID/CEC/50021/2013
provided by FCT).

64

6. REFERENCES
[1] T. Börgers and R. Sarin. Learning through

reinforcement and replicator dynamics. Journal of
Economic Theory, 77(1):1–14, 1997.

[2] D. Catteeuw, B. Manderick, S. Devlin, D. Hennes, and
E. Howly. The limits of reinforcement learning in lewis
signaling games. In Proceedings of the 13th Adaptive
and Learning Agents Workshop, pages 22–30, 2013.

[3] C. Claus and C. Boutilier. The dynamics of
reinforcement learning in cooperative multiagent
systems. In AAAI/IAAI, pages 746–752, 1998.

[4] J. G. Cross. A stochastic learning model of economic
behavior. The Quarterly Journal of Economics, pages
239–266, 1973.

[5] S. De Jong, K. Tuyls, and K. Verbeeck. Artificial
agents learning human fairness. In Proceedings of the
7th International Joint Conference on Autonomous
Agents and Multiagent Systems-Volume 2, pages
863–870. International Foundation for Autonomous
Agents and Multiagent Systems, 2008.

[6] S. de Jong, S. Uyttendaele, and K. Tuyls. Learning to
reach agreement in a continuous ultimatum game.
Journal of Artificial Intelligence Research, pages
551–574, 2008.

[7] R. Duch, W. Przepiorka, and R. Stevenson.
Responsibility attribution for collective decision
makers. American Journal of Political Science,
59(2):372–389, 2015.

[8] I. Erev and A. E. Roth. Predicting how people play
games: Reinforcement learning in experimental games
with unique, mixed strategy equilibria. American
Economic Review, pages 848–881, 1998.

[9] U. Fischbacher, C. M. Fong, and E. Fehr. Fairness,
errors and the power of competition. Journal of
Economic Behavior & Organization, 72(1):527–545,
2009.

[10] R. Forsythe, J. L. Horowitz, N. E. Savin, and
M. Sefton. Fairness in simple bargaining experiments.
Games and Economic Behavior, 6(3):347–369, 1994.

[11] B. Grosskopf. Reinforcement and directional learning
in the ultimatum game with responder competition.
Experimental Economics, 6(2):141–158, 2003.

[12] W. Güth, R. Schmittberger, and B. Schwarze. An
experimental analysis of ultimatum bargaining.
Journal of Economic Behavior & Organization,
3(4):367–388, 1982.

[13] E. Hoffman, K. McCabe, and V. L. Smith. Social
distance and other-regarding behavior in dictator
games. The American Economic Review, pages
653–660, 1996.

[14] N. R. Jennings, P. Faratin, A. R. Lomuscio,
S. Parsons, M. J. Wooldridge, and C. Sierra.
Automated negotiation: prospects, methods and
challenges. Group Decision and Negotiation,
10(2):199–215, 2001.

[15] R. Lin and S. Kraus. Can automated agents
proficiently negotiate with humans? Communications
of the ACM, 53(1):78–88, 2010.

[16] D. M. Messick, D. A. Moore, and M. H. Bazerman.
Ultimatum bargaining with a group: Underestimating
the importance of the decision rule. Organizational
Behavior and Human Decision Processes,

69(2):87–101, 1997.

[17] K. S. Narendra and M. A. Thathachar. Learning
automata: an introduction. Courier Corporation, 2012.

[18] M. A. Nowak, K. M. Page, and K. Sigmund. Fairness
versus reason in the ultimatum game. Science,
289(5485):1773–1775, 2000.

[19] M. J. Osborne. An Introduction to Game Theory.
Oxford University Press New York, 2004.

[20] J. M. Pacheco, F. C. Santos, M. O. Souza, and
B. Skyrms. Evolutionary dynamics of collective action
in n-person stag hunt dilemmas. Proceedings of the
Royal Society B: Biological Sciences,
276(1655):315–321, 2009.

[21] K. M. Page and M. A. Nowak. Empathy leads to
fairness. Bulletin of Mathematical Biology,
64(6):1101–1116, 2002.

[22] K. M. Page, M. A. Nowak, and K. Sigmund. The
spatial ultimatum game. Proceedings of the Royal
Society of London B: Biological Sciences,
267(1458):2177–2182, 2000.

[23] A. E. Roth and I. Erev. Learning in extensive-form
games: Experimental data and simple dynamic models
in the intermediate term. Games and Economic
Behavior, 8(1):164–212, 1995.

[24] F. C. Santos and J. M. Pacheco. Risk of collective
failure provides an escape from the tragedy of the
commons. Proceedings of the National Academy of
Sciences, 108(26):10421–10425, 2011.

[25] F. P. Santos, F. C. Santos, A. Paiva, and J. M.
Pacheco. Evolutionary dynamics of group fairness.
Journal of Theoretical Biology, 378:96–102, 2015.

[26] P. Sequeira, F. S. Melo, and A. Paiva. Emergence of
emotional appraisal signals in reinforcement learning
agents. Autonomous Agents and Multi-Agent Systems,
2014.

[27] R. S. Sutton and A. G. Barto. Reinforcement
Learning: An Introduction. MIT press Cambridge,
1998.

[28] A. Szolnoki, M. Perc, and G. Szabó. Defense
mechanisms of empathetic players in the spatial
ultimatum game. Physical Review Letters,
109(7):078701, 2012.

[29] L. Tesfatsion. Agent-based computational economics:
Growing economies from the bottom up. Artificial
Life, 8(1):55–82, 2002.

[30] R. H. Thaler. Anomalies: The ultimatum game. The
Journal of Economic Perspectives, pages 195–206,
1988.

[31] K. Tuyls, K. Verbeeck, and T. Lenaerts. A
selection-mutation model for q-learning in multi-agent
systems. In Proceedings of the Second International
Joint Conference on Autonomous Agents and
Multiagent Systems, pages 693–700. ACM, 2003.

[32] S. Van Segbroeck, S. De Jong, A. Nowé, F. C. Santos,
and T. Lenaerts. Learning to coordinate in complex
networks. Adaptive Behavior, 18(5):416–427, 2010.

[33] S. Van Segbroeck, J. M. Pacheco, T. Lenaerts, and
F. C. Santos. Emergence of fairness in repeated group
interactions. Physical Review Letters, 108(15):158104,
2012.

65

Limits and Limitations of No-Regret Learning in Games

Barnabé Monnot
Singapore University of Technology and Design

8, Somapah Road
Singapore 487372

monnot_barnabe@mymail.sutd.edu.sg

Georgios Piliouras
Singapore University of Technology and Design

8, Somapah Road
Singapore 487372

georgios.piliouras@gmail.com

ABSTRACT
We study the limit behavior and performance of no-regret dynamics
in general game theoretic settings. We design protocols that achieve
both good regret and equilibration guarantees in general games. In
terms of arbitrary no-regret dynamics we establish a strong equiva-
lence between them and coarse correlated equilibria.

We examine structured game settings where stronger properties
can be established for no-regret dynamics and coarse correlated
equilibria. In congestion games, as we decrease the size of agents,
coarse correlated equilibria become closely concentrated around
the unique equilibrium flow of the nonatomic game. Moreover, we
compare best/worst case no-regret learning behavior to best/worst
case Nash in small games. We study these ratios both analytically
and experimentally. These ratios are small for 2 × 2 games, be-
come unbounded for slightly larger games, and exhibit strong anti-
correlation.

Keywords
Game Theory; No-Regret; Equilibria; Price of anarchy

1. INTRODUCTION
Understanding the outcome of self-interested adaptive play is

a fundamental question of game theory. At the same time un-
derstanding systems that arise from coupling numerous intelligent
agents together is central to numerous other disciplines such as dis-
tributed optimization, artificial intelligence and robotics.

To take the example of a multi-agent system, the problem of
routing a large number of agents with repeated interactions offers
agents the opportunity to learn from these interactions. In partic-
ular, we investigate how much can be gained from the process of
learning, synthesized in a ratio which we call the value of learn-
ing. The reverse is also considered: what agents risk by following
no-regret learning procedures, the price of learning.

The onset of such inquiries typically focuses on equilibria and
their properties. Since games may have multiple Nash equilibria,
two approaches have been developed: one focusing on worst case
guarantees, known as price of anarchy [17], and one focusing on
best case equilibria known as price of stability [1]. Defined as the
ratio between the social cost at the worst Nash equilibrium and the
optimum, price of anarchy captures the worst possible loss in ef-
ficiency due to equilibration. On the other hand, price of stability
compares the social cost of the optimal Nash against the optimum.

Both approaches depend on the assumption that the agents con-
verge to an equilibrium in the first case. This is a strong assumption
and it is typically weakened to merely asking that the agents’ adap-
tive behavior meets some performance benchmark, such as low re-
gret [22]. An online optimization algorithm is said to exhibit van-

ishing regret when its time average performance is roughly at least
as large as the best fixed action with hindsight.

Price of anarchy bounds for Nash equilibria for several classes
of games are known to extend automatically to this larger class of
learning behavior [20]. This implies that those worst case games
are equally bad both for worst case Nash equilibria as well as for
worst case learning behavior. Nevertheless, this does not mean that
for individual games there cannot be significant gaps between the
worst case performance of no-regret dynamics and Nash equilib-
ria. The existence and size of such gaps for typical games are not
well understood. Contrasting best case equilibria versus best case
learning seems to be completely unexplored despite being a rather
natural way to quantify the benefits of improving the design of our
current learning mechanisms.

Our results. We study the limits and limitations of no-regret
learning dynamics in games. We start by designing a protocol
such that in isolation each such algorithm exhibits vanishing re-
gret against any opponent while at the same time converging to
Nash equilibria in self-play in any normal form game. This result
establishes that no regret guarantees do not pose in principle a fun-
damental obstacle to system equilibration.

We establish a strong equivalence between the time average be-
havior of no-regret dynamics in games and coarse correlated equi-
libria (CCE) which is a relaxation to the notion of correlated equi-
libria. Specifically, given any infinite history of play in a game we
can define for any time T a probability distribution over strategy
outcomes that samples one of the T first outcomes uniformly at
random. It is textbook knowledge that for all normal form games
and no-regret dynamics the distance of this time average distribu-
tion from the set of CCE converges to zero as T grows [22]. We
complement this result by establishing an inclusion in the reverse
direction as well. Given any CCE we can construct a sequence
of no-regret dynamics whose time average distribution converges
pointwise to it as T grows. Hence in any normal form game, un-
derstanding best/worst case no-regret dynamics reduces to under-
standing best/worst case CCE.

In the second part of the paper we exploit this reduction to ar-
gue properties about best/worst case no regret learning dynamics
in different classes of games. We provide a shorter, more intuitive
argument that extends to the case of many but small agents by ex-
ploiting the connection to coarse correlated equilibria. Specifically,
we show that for all atomic congestion games as we increase the
number of agents/decrease the amount of flow they control, any
coarse correlated equilibrium concentrates most of its probability
mass on states where all but a tiny fraction of agents have a small
incentive to deviate to another strategy. The uniqueness of the cost
of equilibrium flow at the limit implies that for these games there
is no distinction between good/bad Nash/learning behavior.

66

The picture gets completely reversed when we focus on games
with few agents. We define Price of Learning (PoL) as the ratio
between the worst case no-regret learning behavior and the worst
case Nash whereas the Value of Learning (VoL) compares best case
learning behavior to best case Nash. For the class of 2 × 2 (cost
minimization) games PoL is at most two and this bound is tight,
whereas VoL is at least 3/2 and we conjecture that this bound is
tight as well. Both PoL and VoL become unbounded for slightly
larger games (e.g., 2× 3).

We conclude the paper with experimentation where we compute
PoL, VoL for randomly generated games. When plotted against
each other, (PoL,VoL), reveal a strong anti-correlation effect. High
price of learning is suggestive of low value of learning and vice
versa. Understanding the topology of the Pareto curve on the space
of (PoL, VoL) could quantify the tradeoffs between the risk and
benefits of learning.

2. RELATED WORK
No-regret dynamics in games are central to the field of game

theory and multi-agent learning [21]. Our protocols improve upon
prior work that established convergence only in 2 × 2 games [7].
These dynamics are not efficient. Complexity results strongly in-
dicate that no such dynamics exist for general games [11, 14]. In-
stead, this is a characterization result studying the tension between
achieving no-regret guarantees and equilibration.

The algorithm method presented here for convergence to the one-
shot NE while maintaining the no-regret property is similar in spirit
to ones found in papers such as [18] in its tit-for-tat strategies in re-
peated games. However, this paper [18] is concerned with the set
of NE obtained with the Folk Theorem conditions, larger in gen-
eral than the set of one-shot NE. [9] defines a learning algorithm
that converges in polynomial time to a NE of the one-shot game
for 2 players. We extend this result to the case of N players while
adding the requirement of no-regret to the strategies. [10] intro-
duces an online algorithm that all players follow, leading them to
convergence to Nash Equilibrium of the one-shot game. It also has
the same concept of increasing periods of time after which the al-
gorithm “forgets” and restarts. Indeed, a probabilistic bound of the
same type as Hoeffding (in that case, Chebichev) is used to tune
the length of these periods. In our case though, the learning part
happens over the first three stages, while the last one is simply an
implementation of the equilibrium.

The “weak” convergence of time-average no-regret dynamics to
the set of CCE [22] has been useful in terms of extending price of
anarchy [20] guarantees from NE to no-regret learning, which is
usually referred to as the price of total anarchy [6]. Our equiva-
lence result reduces the search for both best/worst case no-regret
dynamics to a search over CCE which define a convex polytope in
the space of distributions over strategy outcomes. In [12], similar
results are proven for calibrated forecasting rules in almost every
game. Our results extend easily to no-internal-regret algorithms
and correlated equilibria (CE). [13] shows that through the defini-
tion of Φ-regret we can have a general definition that encompasses
both no-internal and no-external regret.

In nonatomic congestion games regret-minimizing algorithms
lead to histories of play where on most days the realized flow is an
(ε, δ) approximate equilibrium [5] . In atomic congestion games
general no-regret dynamics do not converge to NE. If we focus on
specific no-regret dynamics such as multiplicative weights updates
equilibration can be guaranteed [16]. Our results establish a hy-
brid of the two results. In atomic congestion games as the size of
individual agents decreases, the set of coarse correlated equilibria
focuses most of its probability mass on states where all but a tiny

fraction of agents have a small incentive to deviate to another strat-
egy. At the limit where the size of each agent becomes infinitesimal
small, coarse correlated equilibria becomes arbitrarily focused on
the unique nonatomic Nash flow.

In the case of utility games, [2] looks at two different social wel-
fare ratios: the value of mediation defined as the ratio between
the best CE and the best NE and the value of enforcement, which
compares the worst CE to the worst NE. The value of mediation is
shown to be a small constant for 2 × 2 games while the value of
enforcement is unbounded, and they both are unbounded for larger
games. Our results for cost (negative utility) games follow more
closely the setting of [8] where once again the cost of worst CE is
compared to the cost of the worst NE.

[4] shows it is NP-hard to compute a CCE with welfare strictly
better than the lowest-welfare CCE. As a result our experimentation
focuses on small instances but nevertheless reveals an interesting
tension between the risks and benefits of learning.

3. PRELIMINARIES
Let I be the set of players of the game Γ. Each player i ∈ I has

a finite strategy set Si and a cost function ci : Si×S−i −→ [0, 1],
where S−i =

∏
j 6=i Sj . A player i ∈ I may choose his strategy

from his set of mixed strategies ∆(Si), i.e the set of probability
distributions on Si. We extend the cost function’s domain to the
mixed strategies naturally, following the linearity of expectation.

Definition 1. A Nash equilibrium (NE) is a vector of distribu-
tions (p∗i)i∈I ∈

∏
i∈I ∆(Si) such that ∀i ∈ I, ∀pi ∈ ∆(Si)

ci(p
∗
i , p
∗
−i) ≤ ci(pi, p∗−i)

An ε-Nash equilibrium for ε > 0 is one such that

ci(p
∗
i , p
∗
−i) ≤ ci(pi, p∗−i) + ε

We give the definition of a correlated equilibrium, from [3].

Definition 2. A correlated equilibrium (CE) is a distribution π
over the set of action profiles S =

∏
i Si such that for all player i

and strategies si, s′i ∈ Si, si 6= s′i,
∑

s−i∈S−i

ci(si, s−i)π(si, s−i) ≤
∑

s−i∈S−i

ci(s
′
i, s−i)π(si, s−i)

We will also make use of coarse correlated equilibrium ([22]).

Definition 3. A coarse correlated equilibrium (CCE) is a distri-
bution π over the set of action profiles S =

∏
i Si such that for all

player i and strategy si ∈ Si,
∑

s∈S
ci(s)π(s) ≤

∑

s−i∈S−i

ci(si, s−i)πi(s−i)

where πi(s−i) =
∑
si∈Si

π(si, s−i) is the marginal distribution
of π with respect to i.

Definition 4. An online sequential problem consists of a feasible
setF ∈ Rm, and an infinite sequence of cost functions {c1, c2..., },
where ct : Rm → R.

Given an algorithmA and an online sequential problem (F, {c1, c2, . . . }),
if {x1, x2, . . . } are the vectors selected byA, then the cost ofA un-
til time T is

∑T
t=1 c

t(xt). Regret compares the performance of an
algorithm with the best static action in hindsight:

Definition 5. The regret of algorithm A at time T is defined as
R(T) =

∑T
t=1 c

t(xt)−minx∈F
∑T
t=1 c

t(x).

67

An algorithm is said to have no regret or that it is Hannan consis-
tent [22], if for every online sequential problem, its regret at time
T is o(T). For the context of game theory, which is our focus here,
the following definition of no-regret learning dynamics suffices.

Definition 6. The regret of agent i at time T is defined asR(T) =∑T
t=1 ci(s

t)−mins′i∈Si

∑T
t=1 ci(s

′
i, s

t
−i).

We will also make use of the following inequality from [15].

THEOREM 1. Suppose (Xk)nk=1 are independent random vari-
ables taking values in the interval [0, 1]. Let Y denote the empirical
mean Y = 1

n

∑n
k=1 Xk. Then for t > 0

P(|Y − E[Y]| ≥ t) ≤ 2 exp
(
− 2nt2

)

4. NO-REGRET DYNAMICS CONVERGING
TO NASH EQUILIBRIUM IN SELF-PLAY

THEOREM 2. In a finite game with N players, for any ε > 0,
there exist learning dynamics that satisfy simultaneously the fol-
lowing two properties: i) against arbitrary opponents their aver-
age regret is at most ε, ii) in self-play they converge pointwise to a
ε-Nash equilibrium with probability 1.

PROOF. We divide the play in four stages. In the first stage,
players explore their strategy space sequentially and learn the costs
obtained from every action profile. In the second stage, they com-
municate by cheap talk their costs. In the third stage, they compute
the desired ε-Nash equilibrium that is to be reached, for ε > 0.
In the fourth stage, players are expected to use their equilibrium
strategies and they monitor other players in case these deviate from
equilibrium play.

The players are expected to follow a communication procedure
and implement a no-regret strategy in the case of another player’s
deviation. Since the first three stages have finite length (though
very long: exponential in the size of the cost matrix [14]), the no-
regret property follows. The restriction on convergence to an ε-NE,
instead of a mixed NE (so ε = 0) arises from the fact that even
games with rational costs can possess equilibria that are irrational
[19].

Settlement on a particular NE can be decided by a fixed rule
before play, such as lexicographically in the players’ actions or the
NE that has the lowest social cost.

In the fourth stage, players have settled on an equilibrium and
will implement it. To fulfill the requirement of pointwise conver-
gence, it is not enough for the players to stick to a deterministic
sequence of plays. We want them to pick randomly a move from
their equilibrium distribution of actions. During this process, there
can happen that the generated sequence of play of an opponent does
not closely match his equilibrium distribution. In that case, the
players need to decide whether the opponent has been truthful but
“unlucky” or deliberately malicious.

We achieve this by dividing the fourth stage in blocks of increas-
ing length. Let n ∈ N denote the block number, we set block n
to have a length of l(n) = n2 turns. On these blocks, the players
will make use of statistical tests to verify that all other opponents
are truthful. We want to find a test such that a truthful but possibly
unlucky player will fail almost surely a finite number of these tests,
while a malicious player will almost surely fail an infinite number
of these.

We first look at the case where we have N players with only two
strategies, 0 and 1. We can then identify the equilibrium distribu-
tion of a player i, to the probability p∗i that he chooses action 1.

Suppose the play is at the n-th block and player i chooses to
implement the mixed strategy pi. Let (Xi

k)k=1,...,l(n) denote the
sequence of strategies chosen by player i, such that Xi

k ∼ B(pi)
and all are independent. Let Y in be the empirical frequency of strat-
egy 1 during block n.

Y in =
1

l(n)

l(n)∑

j=1

Xi
j

If the player is truthful and implements the prescribed NE, then
we have pi = p∗i and we expect the empirical frequency of strat-
egy 1 Y in to be close to p∗i . Otherwise, a malicious player will
choose pi 6= p∗i .

Let Ain denote the event Ain = {|Y in − p∗i | ≥ tn}. In other
words, we are trying to determine how far the empirical frequency
of strategy 1 is from the expected equilibrium distribution. If the
event Ain is realised, then the test is failed: the empirical distribu-
tion of play is too far from the expected NE distribution. The idea
is to make block after block the statistical test more discriminating,
i.e get a decreasing sequence (tn)n such that a truthful player will
only see a finite number of events Ain happen, while a malicious
one will face an infinite number of failures.

We claim that picking t = n−α with 0 < α < 1 is enough.
Indeed by Hoeffding’s inequality we have that

P(Ain) ≤ 2 exp
(
− 2n2t2

)

if the player is truthful (remember that block n has length l(n) =
n2).

Extending the proof to the case where a player i has finite strat-
egy set Si is not hard. Let (pis)s∈S be the distribution that the i-th
player decides to implement, while (pi,∗s)s∈S is the NE distribution
for player i. Let Xi,s

k follow a multinomial distribution of param-
eters (pis)s∈S . Then Y i,sn is the empirical frequency of strategy s
during block n for player i. We define events

Ai,sn = {|Y i,sn − pi,∗s | ≥ tn}.

Then we define our test Ain to be ∪s∈SiA
i,s
n . Using Hoeffding’s

inequality again we obtain:

P(Ain) = P(∪s∈SiA
i,s
n)

≤
∑

s∈Si

P(Ai,sn) ≤ |Si| × 2 exp(−2n2t2)

Thus
∑

P(Ain) < +∞ for 0 < α < 1, so by Borel-Cantelli we
know that the Ain will only ever happen a finite number of times if
the player is truthful, i.e if E[Y i,sn] = pi,∗s .

To satisfy the no-regret property, we do the following: if one
of the opponents failed the statistical test described earlier, then all
players will implement a no-regret strategy for a time n2+δ to com-
pensate for that. We call this block of size n2+δ a compensating
block.

If a finite number of tests fails, then the whole sequence satis-
fies the ε-regret property, since players are arbitrarily close to the
ε-Nash equilibrium. When one of the tests fails, say, at block n, the
maximum regret accumulated is of size n2. The following com-
pensating block guarantees that overall regret has grown by a value
bounded by n1−δ , so sublinearly.

We also guarantee that the expected turn number that ends the
last of the truthful player’s potential failed block is not infinity. In-
deed let Bn be the event that the last failed block is the n-th one.
Then

68

P(Bn) = P(An)× P(Acn+1) . . .

≤ 2 exp(−2n2t2)× 1 . . .

≤ 2 exp(−2n2t2)

We useAc to denote the complement of eventA. The first equal-
ity holds by independence of the blocks, the second inequality is
true from Hoeffding’s and the fact that a probability is less or equal
to 1. We then define L to be the index of the turn that ends the last
compensating block of a truthful player. L is a random variable on
the integers. We have

E[L] ≤
∑

n

(n∑

k=1

(k2 + k2+δ)
)
× 2 exp(−2n2t2) < +∞

We bound E[L] by assuming a truthful player got every test
wrong up to the latest failed one. Then the last turn L occurs at
index

∑
n(n2 + n2+δ). We multiply this by the bound on P(Bn)

and use the property of the exponential to conclude that E[L] is
bounded.

5. EQUIVALENCE BETWEEN COARSE COR-
RELATED EQUILIBRIA AND NO-REGRET
DYNAMICS

The long-run average outcome of no-regret learning converges
to the set of coarse correlated equilibria [22]. Here, we argue the
reverse direction.

THEOREM 3. Given any coarse correlated equilibrium C of a
normal form game with a finite number of players n and finite num-
ber of strategies, there exist a set of n-no regret processes such that
their interplay converges to the coarse correlated equilibrium C.

PROOF. Suppose that we are given a coarse correlated equilib-
rium C of a n-player game∗. There exists a natural number K,
such that all probabilities are multiples of 1/K. We can create a
sequence of outcomes S of length K, such that the probability dis-
tribution that chooses each such outcome with probability 1/K is
identical to the given coarse correlated equilibrium C. The high
level idea is to have the agents play this sequence in a sequential,
cyclical manner and punish any observed deviation from it by em-
ploying any chosen no regret algorithm (e.g., Regret Matching).

Let’s denote the j-th element of this sequence as< xj1, x
j
2, ..., x

j
N >,

where 0 ≤ j ≤ K − 1. Each element of this sequence will act as
a recommendation vector for the no regret algorithm. Given the
sequence above we are ready to define for each of the N players a
no regret algorithm, such that their interplay converges to the given
coarse correlated equilibrium C.

The algorithm for the i-th player is as follows: at time zero she
plays the i-th coordinate of the first element in S. As long as the
other players’ responses up to any point in time t are in unison with
S, that is for every t′ < t and j 6= i the strategy implemented
by player j at time t′ was xt

′ mod K
j then the i-player will follow

the recommendation of the S sequence playing xt mod K
i . How-

ever, as soon as the player recognizes any sort of deviation from S
by another player then the player will just disregard any following
∗We will assume that all involved probabilities are rational. Since
the set of coarse correlated equilibria is a convex polytope defined
Ax ≤ b where all entries of A, b are rational every correlated
equilibrium involves rational probabilities or can be approximated
with arbitrarily high accuracy by using rational probabilities.

recommendations coming from S and will merely follow from that
point on a no regret algorithm of her liking.

It is straightforward to check that in self-play this protocol con-
verges to the given coarse correlated equilibrium C. We need to
also prove that all of these algorithms are no-regret algorithms.
When analyzing the accumulated regret of any of the algorithms
above we split their behavior into two distinct segments. The first
segment corresponds to the time periods before any deviation is
recorded from the recommendation provided by C. For this seg-
ment, the definition of coarse correlated equilibrium implies that
each agent experiences bounded total regret (only corresponding to
the last partial sequence of length at mostK). Once a first deviation
is witnessed by the player in question, she turns to her no-regret al-
gorithm of choice and the no regret property then follows from this
algorithm. As a result, each algorithm exhibits vanishing (average)
regret in the long run.

6. COLLAPSING EQUILIBRIUM CLASSES

6.1 Congestion games with small agents
We have a finite ground set of elements E. There exist a con-

stant number k of types of agents and each agent of type i has an
associated set of allowable strategies/paths Si. S is the set of pos-
sible strategy outcomes. Let Ni be the set of agents of type i. We
assume that each agent of type i controls a flow of size 1/|Ni|,
which he assigns to one of his available paths Si. This can also
be interpreted as a probability distribution over the set of strategies
Si. Each element e has a nondecreasing cost functions of bounded
slope ce : R → R which dictates its latency given its load. The
load of an edge e is `e(s) =

∑
i
ki
|Ni| , where ki the number of

agents of type i which have edge e in their path in the current strat-
egy outcome. The cost of any agent of type i for choosing strategy
si ∈ Si is csi(s) =

∑
e∈si ce(`e(s)). In many cases, we abuse

notation and write `e, csi instead of `e(s), csi(s) when the strategy
outcome is implied. The social cost, i.e., the sum of agents’ costs,
is equal to C(s) =

∑
e ce(`e)`e. Finally, it is useful to keep track

of the flows going trough a path si or an edge e when focusing on
agents of a single type i. We denote these quantities as `isi(s) and
`ie(s) =

∑
si3e `

i
si(s). For any strategy outcome s and any type i,∑

si∈Si
`isi(s) = 1 defining a distribution over Si.

We normalize the cost functions uniformly so that the cost of any
path as well as the increase to the cost of any path due to the devia-
tion by a single agent are both upper and lower bounded by absolute
positive constants. To simplify the number of relevant parameters
we treat the number of resources, paths as a constant.

THEOREM 4. In congestion games with cost functions of bounded
slope, as long as the flow that each agent controls is at most ε, any
coarse correlated equilibrium applies at least 1 − O(ε1/4) proba-
bility to set of outcomes where at most O(ε1/8) fraction of agents
have more than O(ε1/8) incentive to deviate.

PROOF. Let π be a coarse correlated equilibrium of the game
and let π(s) the probability that it assigns to strategy outcome s.
By definition of CCE, the expected cost of any agent cannot de-
crease if he deviates to another strategy. We consider two possible
deviations for each agent of type i. Deviation A has the agent de-
viating to a strategy that has minimal expected cost according to π
(amongst his available strategies). Deviation B has the agent devi-
ating to the mixed strategy that corresponds to expected flow of all
the agents of type i in π. If each agent controlled infinitesimal flow

69

then his cost would be equal to

min
si∈Si

Es∼π[
∑

e∈Si

ce(`e(s))]

and
∑

si∈Si

Es∼π[`isi(s)]Es∼π[
∑

e∈Si

ce(`e(s))]

when deviating to A and B respectively.
Furthermore, his expected cost at π would be less or equal to

his cost when deviating to A, which would again be less or equal
to his cost when deviating to B. Due to the normalization of the
cost functions and the small flow ≤ ε that each agent controls this
ordering is preserved modulo O(ε) terms. This ordering and size
of error terms is preserved when computing the (expected) social
costs according to π, the sum of the deviation costs when each
agent deviates according to A and the sum of all deviation costs
when they deviate according to B. I.e.

Es∼π[C(s)] ≤
∑

i

min
si∈Si

Es∼π[
∑

e∈Si

ce(`e(s))] +O(ε)

≤
∑

i

∑

si∈Si

Es∼π[`isi(s)]Es∼π[
∑

e∈Si

ce(`e(s))] +O(ε)

By applying Chebyshev’s sum inequality we can derive that for
each edge e

Es∼π[`e(s)]Es∼π[ce(`e(s))] ≤ Es∼π[`e(s)ce(`e(s))]

Taking summation over all edges, we produce the inverse of our
first inequality, since `e(s) =

∑
i

∑
si3e `

i
si(s), implying that all

related terms are equal to each other up to errors of O(ε).
By linearity of expectation we have that

Es∼π
[(
`e(s)−Es∼π[`e(s)]

)
ce(Es∼π[`e(s)])

]
= 0.

Combining everything together we derive that

Es∼π
[∑

e

(
`e(s)−Es∼π[`e(s)]

)

·
(
ce(`e(s))− ce(Es∼π[`e(s)])

)]
= O(ε).

Since costs ce(x) are nondecreasing, the function whose expec-
tation we are computing is always nonnegative. In fact, since we
have assumed that the slope of the cost functions is upper, lower
bounded by some fixed constants we have that

Es∼π
∑

e

(
`e(s)−Es∼π[`e(s)]

)2

= O(ε).

By applying Cauchy-Schwarz inequality, we derive that

Es∼π
∑

e

|`e(s)−Es∼π[`e(s)]| = O(
√
ε)

The coarse correlated equilibrium π is closely concentrated around
its “expected” flow Es∼π[`e(s)]. For simplicity we denote this
continuous flow y. The set of strategy outcomes S′ ⊂ S with∑
e |`e(s′) − `e(y)| > ε1/4 must receive (in π) cumulative prob-

ability mass less than O(ε1/4). If we consider the rest strategy
outcomes, which we denote as “good”, then we have that in each
“good" outcome both the social cost (i.e. the sum of the costs of
all agents) as well as the cost of the optimal path are always within
O(ε1/4) of the respective social cost and cost of the optimal path

under flow y. Finally, by combining our main inequality with the
fact that Es∼π

∑
e |`e(s) − Es∼π[`e(s)]| = O(

√
ε) we have that

the social cost under flow y are within O(
√
ε) of the cost of the

optimal path under y.† Hence, all of the “good” outcomes have so-
cial cost within O(ε1/4) of the cost of their own optimal path. So,
at most O(ε1/8) agents in each “good” outcome can decrease their
cost by more than O(ε1/8) by deviating to another path.

6.2 CE = CCE for N agents 2 strategy games

PROPOSITION 1. For games where all players have only two
strategies, the set of coarse correlated equilibria is the same as the
set of correlated equilibria.

PROOF. Let i be one of the players, suppose his two strategies
are A and D, where we pick D to be the deviating one. Then the
requirement for correlated equilibrium states that
∑

s−i∈S−i

ui(s−i, D)π(s−i, A) ≥
∑

s−i∈S−i

ui(s−i, A)π(s−i, A)

while the corresponding one for coarse correlated equilibrium is
∑
s−i∈S−i

ui(s−i, D)(π(s−i, A) + π(s−i, D)) ≥
∑
s−i∈S−i

(ui(s−i, D)π(s−i, D) + ui(s−i, A)π(s−i, A))

which is equivalent after removing the
∑
s−i∈S−i

ui(s−i, D)π(s−i, D)

term on both sides.

7. SOCIAL WELFARE GAPS FOR DIFFER-
ENT EQUILIBRIUM CONCEPTS

We define a measure to compare equilibria obtained under no-
regret algorithms to Nash equilibria: the value of learning. This
measure quantifies by how much the players are able to decrease
their costs when relaxing the equilibrium requirements from Nash
to CCE.

Definition 7. Define the value of learning in cost games VoL as
the ratio of the social cost of the best Nash equilibrium to that of
the best coarse correlated equilibrium.

VoL(Γ) =
best NE

best CCE
†Since we have

Es∼π
∑

e

|`e(s)−Es∼π[`e(s)]| = O(
√
ε)

the terms ∑

i

min
si∈Si

Es∼π[
∑

e∈Si

ce(`e(s))]

and ∑

i

min
si∈Si

∑

e∈Si

ce(Es∼π[`e(s)])

as well as the pair of
∑

i

∑

si∈Si

Es∼π[`isi(s)]Es∼π[
∑

e∈Si

ce(`e(s))]

with the term
∑

i

∑

si∈Si

Es∼π[`isi(s)]
∑

e∈Si

ce(Es∼π[`e(s)])

are withinO(
√
ε) of each other, but the first and last term are within

O(ε) of each other, implying that all terms are within O(
√
ε).

70

Since the set of NE is included in the set of CCE, then the best
NE in terms of social cost will always be greater than the best CCE.
Thus we take the ratio so that the value of learning is always greater
than or equal to 1, a convention also found in other papers related
to the price of anarchy [2, 8].

Conversely, we define the price of learning as the ratio of the
worst CCE to the worst NE.

Definition 8. Define the price of learning PoL in a cost game Γ
as the ratio of the social cost of the worst coarse correlated equilib-
rium to that of the worst Nash equilibrium.

PoL(Γ) =
worst CCE
worst NE

This approach is not too dissimilar to the one adopted in [8],
which defines the ration of the worst CE to the worst NE as the price
of mediation. With the help of proposition 1, we can extend their
result to learning algorithms that possess the no-regret property.

7.1 2x2 games
Denote by Γ2×2 the class of 2 × 2 games. We are interested in

the best-case scenario: how high the ratio of the value of learning
can get for all 2× 2 games.

Definition 9. Denote by VoL(Γ2×2) = supΓ∈Γ2×2
VoL(Γ) the

value of learning for the class of 2× 2 games.

PROPOSITION 2. VoL(Γ2×2) ≥ 3
2

PROOF. Consider the following cost game for x > 1

L R()
T 0, x− 1 x, x
B 1, 1 x− 1, 0

The game admits three NE: (T,L), (B,R) and ((0.5, 0.5), (0.5, 0.5)).
The first two have social cost equal to x−1 while the latter’s is x/2.
Hence for x > 2, the social cost of the best NE is x− 1.

The correlated equilibrium that minimizes social cost assigns
probability 1/3 to every action profile except for (T,R). Its so-
cial cost is 2x/3. Hence, in this game, VoL = 3(x−1)

2x
. Taking

x −→ +∞, we derive VoL(Γ2×2) ≥ 3
2

.

We conjecture that this 3
2

bound is tight, i.e, there is no 2 × 2
game Γ such that VoL(Γ) > 3/2.

To support this claim, we have run numerical simulations on
games generated from a random uniform distribution. An inter-
esting result is the predominance of games for which the ratios are
1, i.e mediation does not better the social welfare/cost. We then ob-
serve higher ratios at a lower rate, hence our histograms look like
those of a power law (figure 1). The obtained ratios come close
to the 3/2 threshold, without going further (only a few ratios ap-
proaching 1.4 were observed over 107 simulations).

PROPOSITION 3. PoL(Γ2×2) = 2

PROOF. By proposition 1, the social cost of the worst CE is
equal to the social cost of the worst CCE, since the set of CE is the
same as the set of CCE. Then by [8], we have that PoL(Γ2×2) =
2.

In figure 2 we present a 2D histogram of the joint distribution
of the VoL and PoL. 106 games were generated and for each we
compute both values. The size of the dot is representative of how
many games possess particular values for the VoL and the PoL.

Figure 1: Histogram of values of learning obtained over 107

simulations for 2×2 games. A log10 scale is used for the y-axis.

Figure 2: 2D histogram of VoL and PoL over 106 simulations
for 2 × 2 games. The count legend is to be interpreted as a
power of ten (so count of 5 is 105)

7.2 Larger games
Next, we examine larger games, i.e., games with more than 2

players and/or more than 2 strategies per player. Let Γm1,m2 de-
note a 2 player game with respectively m1 and m2 strategies for
each player.

PROPOSITION 4. For sets of games Γm1,m2 , max(m1,m2) >
2, we have VoL(Γm1,m2) = +∞.

PROOF. Consider for ε < 1
2

the game

L C R()
T 1− ε, 1− ε 2ε, 3ε

2
2ε, 1

2

B 1
2
, 2ε ε, 1− ε 1, 2ε

The game admits three NE: (L,B), ((0, 1), (2/3, 0, 1/3)) and
(2/3, 1/3), (0, 1−ε, ε). Of the three, the latter has the lowest social
cost, equal to 1/3 + o(ε), where o(ε) −→ε→0 0.

We can define the following correlated equilibrium π:

L C R()
T 0 1− 5ε

2
ε

B ε 0 ε/2

The best social cost in a correlated equilibrium will be lower than
that of π, which is o(ε). We also have that the best social cost in a
CCE will be lower than that of a CE.

Thus taking ε→ 0, we obtain an unbounded VoL.

Since the set of CE ⊆ CCE, we can again extend some results
from previous papers to the latter set.

71

Figure 3: Histogram of ratios best NE/best CCE (VoL) ob-
tained over 106 simulations for 3× 3 games.

Figure 4: 2D histogram of VoL and PoL over 106 simulations
for 3 × 3 games. The count legend is to be interpreted as a
power of ten (so count of 5 is 105). We zoomed in the portion
[1, 2.5]2 to show finer results.

PROPOSITION 5. For games Γm1,m2 , max(m1,m2) > 2, we
have PoL(Γm1,m2) = +∞.

PROOF. Since CE ⊆ CCE, the social cost of the worst CCE is
higher than that of the worst CE. By [8] we have that PoM = +∞,
hence PoL = +∞.

We run a number of simulations to see how VoL is distributed for
random games (figure 3). We have also included a 2D histogram
(figure 4) showing (VoL, PoL) for a number of generated games.
Some sampled games have high VoL and some high PoL but not
both, indicating a competitive relationship between the two quanti-
ties.

8. CONCLUSION
No-regret learning, due to its simplicity to implement in multi-

agent settings, has seen considerable exposure in the literature of
the last decade. The convergence of play to the set of coarse corre-
lated equilibria is one property that makes these learning algorithms
useful in practice. But if we look closer, it is not clear where this
convergence leads the play. We have first shown that we can steer
it using a somewhat unnatural algorithm to any NE of the one-shot
game, while maintaining the no-regret property. In the next sec-
tions, we have understood better how the class of CCE relates to
no-regret dynamics, and to the smaller class of CE. This lead us
to define more general measures of the price of anarchy: if it is
hard to predict where the play following no-regret dynamics will
go, we are at least able to give some PoA bounds on the resulting
payoffs. This section is concluded with experimental results that
show a concentration of small ratios, indicating a closeness to NE
payoffs. The question of the Value of Learning for 2 × 2 games is

left open, with our proven lower bound of 3/2, which we believe to
be tight.

REFERENCES
[1] E. Anshelevich, A. Dasgupta, J. Kleinberg, É.. Tardos,

T. Wexler, and T. Roughgarden. The price of stability for
network design with fair cost allocation. In Foundations of
Computer Science (FOCS), pages 295–304. IEEE, 2004.

[2] I. Ashlagi, D. Monderer, and M. Tennenholtz. On the value
of correlation. Journal of Artificial Intelligence Research,
pages 575–613, 2008.

[3] R. J. Aumann. Subjectivity and correlation in randomized
strategies. Journal of mathematical Economics, 1(1):67–96,
1974.

[4] S. Barman and K. Ligett. Finding any nontrivial coarse
correlated equilibrium is hard. In ACM Conference on
Economics and Computation (EC), 2015.

[5] A. Blum, E. Even-Dar, and K. Ligett. Routing without regret:
On convergence to nash equilibria of regret-minimizing
algorithms in routing games. Theory of Computing,
6(1):179–199, 2010.

[6] A. Blum, M. Hajiaghayi, K. Ligett, and A. Roth. Regret
minimization and the price of total anarchy. In Proceedings
of the fortieth annual ACM symposium on Theory of
computing, pages 373–382. ACM, 2008.

[7] M. Bowling. Convergence and no-regret in multiagent
learning. Advances in neural information processing systems,
17:209–216, 2005.

[8] M. Bradonjic, G. Ercal-Ozkaya, A. Meyerson, and
A. Roytman. On the price of mediation. In Proceedings of
the 10th ACM conference on Electronic commerce, pages
315–324. ACM, 2009.

[9] R. I. Brafman and M. Tennenholtz. Efficient learning
equilibrium. Artificial Intelligence, 159(1):27–47, 2004.

[10] V. Conitzer and T. Sandholm. Awesome: A general
multiagent learning algorithm that converges in self-play and
learns a best response against stationary opponents. Machine
Learning, 67(1-2):23–43, 2007.

[11] C. Daskalakis, P. W. Goldberg, and C. H. Papadimitriou. The
complexity of computing a Nash equilibrium. SIAM J.
Comput., 39(1):195–259, 2009.

[12] D. P. Foster and R. V. Vohra. Calibrated learning and
correlated equilibrium. Games and Economic Behavior,
21(1):40–55, 1997.

[13] A. Greenwald and A. Jafari. A general class of no-regret
learning algorithms and game-theoretic equilibria. In
Learning Theory and Kernel Machines, pages 2–12.
Springer, 2003.

[14] S. Hart and Y. Mansour. The communication complexity of
uncoupled nash equilibrium procedures. In Proceedings of
the thirty-ninth annual ACM symposium on Theory of
computing, pages 345–353. ACM, 2007.

[15] W. Hoeffding. Probability inequalities for sums of bounded
random variables. Journal of the American statistical
association, 58(301):13–30, 1963.

[16] R. Kleinberg, G. Piliouras, and É. Tardos. Multiplicative
updates outperform generic no-regret learning in congestion
games. In ACM Symposium on Theory of Computing
(STOC), 2009.

[17] E. Koutsoupias and C. H. Papadimitriou. Worst-case
equilibria. In STACS, pages 404–413, 1999.

72

[18] M. L. Littman and P. Stone. A polynomial-time nash
equilibrium algorithm for repeated games. Decision Support
Systems, 39(1):55–66, 2005.

[19] J. Nash. Non-cooperative games. Annals of mathematics,
pages 286–295, 1951.

[20] T. Roughgarden. Intrinsic robustness of the price of anarchy.
In Proc. of STOC, pages 513–522, 2009.

[21] Y. Shoham, R. Powers, and T. Grenager. If multi-agent
learning is the answer, what is the question? Artificial
Intelligence, 171(7):365–377, 2007.

[22] H. Young. Strategic Learning and Its Limits. Arne Ryde
memorial lectures. Oxford University Press, 2004.

73

New Game-theoretic Anti-Poaching Solution Methods for
Wildlife Protection

Thanh H. Nguyen1, Arunesh Sinha1, Shahrzad Gholami1, Andrew Plumptre2,
Lucas Joppa3, Milind Tambe1, Margaret Driciru4, Fred Wanyama4, Aggrey Rwetsiba4,

Rob Critchlow5, Colin M. Beale5

1University of Southern California, USA, {thanhhng,aruneshs,sgholami,tambe}@usc.edu
2Wildlife Conservation Society, USA, aplumptre@wcs.org

3Microsoft Research, USA, lujoppa@microsoft.com
4Uganda Wildlife Authority, Uganda,

{margaret.driciru,fred.wanyama,aggrey.rwetsiba}@ugandawildlife.org
5The University of York, UK, {rob.critchlow,colin.beale}@york.ac.uk

ABSTRACT
Wildlife poaching presents a serious extinction threat to many an-
imal species. Agencies (“defenders”) focused on protecting such
animals need tools that help analyze, model and predict poacher
activities, so they can more effectively combat such poaching; such
tools could also assist in planning effective defender patrols, build-
ing on the previous security games research.

To that end, we have built a new predictive anti-poaching tool,
CAPTURE (Comprehensive Anti-Poaching tool with Temporal
and observation Uncertainty REasoning). CAPTURE provides
four main contributions. First, CAPTURE’s modeling of poach-
ers provides significant advances over previous models from be-
havioral game theory and conservation biology. This accounts for:
(i) the defender’s imperfect detection of poaching signs; (ii) com-
plex temporal dependencies in the poacher’s behaviors; (iii) lack
of knowledge of numbers of poachers. Second, we provide two
new heuristics: parameter separation and target abstraction to re-
duce the computational complexity in learning the poacher mod-
els. Third, we present a new game-theoretic algorithm for com-
puting the defender’s optimal patrolling given the complex poacher
model. Finally, we present detailed models and analysis of real-
world poaching data collected over 12 years in Queen Elizabeth
National Park in Uganda to evaluate our new model’s prediction
accuracy. This paper thus presents the largest dataset of real-world
defender-adversary interactions analyzed in the security games lit-
erature. CAPTURE will be tested in Uganda in early 2016.

Keywords
Security Game; Wildlife Protection; Temporal Behavorial Model

1. INTRODUCTION
Wildlife protection is a global concern. Many species such as

tigers and rhinos are in danger of extinction as a direct result of
illegal harvesting (i.e., poaching) [19, 26]. The removal of these
and other species from the landscape threatens the functioning of
natural ecosystems, hurts local and national economies, and has
become an international security concern due to the unregulated
profits of poachers flowing to terrorist organizations [24]. To pre-
vent wildlife poaching, conservation organizations attempt to pro-
tect wildlife parks with well-trained park rangers. In each time pe-
riod (e.g., one month), park rangers conduct patrols within the park
area to prevent poachers from capturing animals either by catching

the poachers or by removing animals traps laid out by the poachers.
During the rangers’ patrols, poaching signs are collected and then
can be used together with other domain features (e.g., animal den-
sity) to predict the poachers’ behavior [6, 8]. In essence, learning
the poachers’ behavior, anticipating where poachers often go for
poaching, is critical for the rangers to generate effective patrols.

Motivated by the success of defender-attacker Stackelberg Se-
curity Game (SSG) applications for infrastructure security prob-
lems [28, 3, 14], previous work has began to apply SSGs for
wildlife protection [30, 9, 8]. In particular, an SSG-based pa-
trolling decision-aid called PAWS has been deployed in south-east
Asia [8]. PAWS focuses on generating effective patrols for the
rangers, taking into account the complex topographic conditions of
Asian forests. Despite its successful application, PAWS is known
to suffer from several limitations. First, PAWS relies on an exist-
ing adversary behavior model known as Subjective Utility Quan-
tal Response (SUQR) [8], which makes several limiting assump-
tions such as (a) all poaching signs are perfectly observable by the
rangers; (b) poachers’ activities in one time period are independent
of their activities in previous or future time periods; (c) the number
of poachers is known. As a result, SUQR’s modeling falls short
of what is required, as security agencies in some countries are in-
terested in detailed analysis, modeling and prediction of poacher
behavior, taking into account all of the detailed domain features.
That is they may wish to obtain such information for situational
awareness of the area under their protection and for other strate-
gic decisions. Second, since SUQR has traditionally only relied on
three or four domain attributes in its modeling, it has not been able
to provide a detailed analysis of the impact of environmental and
terrain features on poacher behavior, and thus such analysis of real-
world data has been lacking in the literature. Third, richer adver-
sary models would also require new patrol generation algorithms
that improve upon what is used in PAWS.

In essence, our new CAPTURE tool attempts to address all
aforementioned limitations in PAWS while providing the follow-
ing three key contributions. Our first area of contribution relates
to CAPTURE’s addressing SUQR’s limitations in modeling ad-
versary behavior. More specifically, CAPTURE introduces a new
behavioral model which takes into account the rangers’ imperfect
detection of poaching signs. Additionally, we incorporate the de-
pendence of the poachers’ behavior on their activities in the past
into the component for predicting the poachers’ behavior. More-
over, we adopt logistic models to formulate the two components of

74

the new model. This enables capturing the aggregate behavior of
attackers without requiring a known number of poachers. Finally,
CAPTURE considers a richer set of domain features in addition to
the three/four features used in SUQR in analyzing the poachers’ be-
havior. Second, we provide two new heuristics to reduce the com-
putational cost of learning adversary models in CAPTURE, namely
parameter separation and target abstraction. The first heuristic di-
vides the set of model parameters into separate subsets and then
iteratively learns these subsets of parameters separately while fix-
ing the values of the other subsets. This heuristic decomposes the
learning process into less complex learning components which help
in speeding up the learning process with no loss in accuracy. The
second heuristic of target abstraction works by leveraging the con-
tinuous spatial structure of the wildlife domain, starting the learn-
ing process with a coarse discretization of forest area and gradually
using finer discretization instead of directly starting with the most
detailed representation, leading to improved runtime overall. Our
third contribution lies in computing the optimal patrolling strategy
of the rangers given the new behavioral model. Specifically, we
provide a new game-theoretic algorithm for single/multiple-step
patrolling plans wherein the poachers’ actions (which follow the
CAPTURE model) are recursively explored in multiple time steps.

Finally, we extensively evaluate the prediction accuracy of our
new CAPTURE model based on a detailed analysis of the largest
dataset of real-world defender-adversary interactions collected by
rangers in Queen Elizabeth National Park (QENP) over 12 years.
In fact, this is the largest such study in the security games literature.
The experimental results show that our model is superior to existing
models in predicting the poachers’ behaviors, demonstrating the
advances of our model over the previous state-of-the-art models.
To that end, CAPTURE will be tested in Uganda in early 2016.

2. BACKGROUND & RELATED WORK
Stackelberg Security Games. In Stackelberg security games,
there is a defender who attempts to optimally allocate her limited
security resources to protect a set of targets against an adversary
attempting to attack one of the targets [28]. In SSGs, the defender
commits to a mixed strategy first while the attacker can observe
the defender’s strategy and then take an action based on that ob-
servation. A pure strategy of the defender is an assignment of her
limited resources to a subset of targets and a mixed strategy of the
defender refers to a probability distribution over all possible pure
strategies. The defender’s mixed strategies can be represented as a
marginal coverage vector over the targets (i.e., the coverage proba-
bilities with which the defender will protect each target) [13]. We
denote by N the number of targets and 0 ≤ ci ≤ 1 the defender’s
coverage probability at target i for i = 1 . . . N . If the attacker
attacks target i and the defender is not protecting that target, the
attacker obtains a reward Rai while the defender gets a penalty P di .
Conversely, if the target is protected, the attacker receives a penalty
P ai while the defender achieves a rewardRdi . The expected utilities
of the defender, Udi , and attacker, Uai , are computed as follows:

Udi = ciR
d
i + (1− ci)P di (1)

Uai = ciP
a
i + (1− ci)Rai (2)

Behavioral Models of Adversaries. In SSGs, different behav-
ioral models have been proposed to capture the attacker’s behav-
ior. The Quantal Response model (QR) is one of the most popular
behavioral models which attempts to predict a stochastic distribu-
tion of the attacker’s responses [16, 17]. In general, QR predicts
the probability that the attacker will choose to attack each target
with the intuition that the higher expected utility of a target, the

more likely that the attacker will choose that target. A more recent
model, SUQR, (which is shown to outperform QR) also attempts
to predict an attacking distribution over the targets [22]. However,
instead of relying on expected utility, SUQR uses the subjective
utility function, Ûai , which is a linear combination of all features
that can influence the attacker’s behaviors.

Ûai = w1ci + w2R
a
i + w3P

a
i (3)

where (w1, w2, w3) are the key model parameters which measure
the importance of the defender’s coverage, the attacker’s reward
and penalty w.r.t the attacker’s action. Based on subjective utility,
SUQR predicts the attacking probability, qi, at target i as follows:

qi =
eÛ

a
i

∑
j e
Ûaj

(4)

In addition to QR/SUQR, there are other lines of research which
focus on building models of criminal behavior in urban crime [7,
20, 23, 32] or opponent behavior in poker [10, 27]. However, these
models are specifically designed for these domains, which rely on
the complete past crime/game data as well as intrinsic domain char-
acteristics. Another line of research focuses on adversarial plan
recognition [1], which can be applied for computer intrusion detec-
tion and detection of anomalous activities, etc. This line of work
does not learn model parameters as well as do any patrol planning.
Here, CAPTURE focuses on modeling the poachers’ behavior in
wildlife protection which exhibits unique challenges (as shown be-
low) that existing behavioral models cannot handle.
Wildlife Protection. Previous work in security games has mod-
eled the problem of wildlife protection as a SSG in which the
rangers play in a role of the defender while the poachers are the
attacker [30, 9, 8, 12]. The park area can be divided into a grid
where each grid cell represents a target. The rewards and penal-
ties of each target w.r.t the rangers and poachers can be determined
based on domain features such as animal density and terrain slope.
Previous work focuses on computing the optimal patrolling strat-
egy for the rangers given that poachers’ behavior is predicted based
on existing adversary behavioral models. However, these models
make several limiting assumptions as discussed in Section 1 includ-
ing (a) all poaching signs (e.g., snares) are perfectly observable by
the rangers; (b) poachers’ activities in one time period are inde-
pendent of their activities in previous or future time periods; (c)
the number of poachers is known. To understand the limiting na-
ture of these assumptions, consider the issue of observability. The
rangers’ capability of making observations over a large geographi-
cal area is limited. For example, the rangers usually follow certain
paths/trails to patrol; they can only observe over the areas around
these paths/trails which means that they may not be able to make
observations in other further areas. In addition, in areas such as
dense forests, it is difficult for the rangers to search for snares. As
a result, there may be still poaching activities happening in areas
where rangers did not find any poaching sign. Therefore, relying
entirely on the rangers’ observations would lead to an inaccurate
prediction of the poachers’ behavior, hindering the rangers’ patrol
effectiveness. Furthermore, when modeling the poachers’ behavior,
it is critical to incorporate important aspects that affect the poach-
ers’ behavior including time dependency of the poachers’ activities
and patrolling frequencies of the rangers. Lastly, the rangers are
unaware of the total number of attackers in the park.

In ecology research, while previous work mainly focused on esti-
mating the animal density [15], there are a few works which attempt
to model the spatial distribution of the economic costs/benefits of
illegal hunting activities in the Serengeti national park [11] or the

75

threats to wildlife and how these change over time in QENP [6].
However, these models also have several limitations. First, the pro-
posed models do not consider the time dependency of the poach-
ers’ behaviors. These models also do not consider the effect of the
rangers’ patrols on poaching activities. Furthermore, the prediction
accuracy of the proposed models is not measured. Finally, these
works do not provide any solution for generating the rangers’ pa-
trolling strategies with a behavioral model of the poachers.

3. BEHAVIORAL LEARNING
Security agencies protecting wildlife have a great need for tools

that analyze, model and predict behavior of poachers. Such mod-
eling tools help the security agencies gain situational awareness,
and decide general strategies; in addition, these agencies also find
it useful to have patrol planning tools that are built based on such
models. The key here is that in wildlife protection areas around the
world, these security agencies have collected large amounts of data
related to interactions between defenders (patrollers) and adver-
saries (poachers). In our work, we focus on QENP [30, 6], where
in collaboration with the Wildlife Conservation Society (WCS) and
Uganda Wildlife Authority (UWA), we have obtained 12 years of
ranger-collected data (that is managed in database MIST/SMART).

In CAPTURE, we introduce a new hierarchical behavioral model
to predict the poachers’ behavior in the wildlife domain, taking into
account the challenge of rangers’ imperfect observation. Overall,
the new model consists of two layers. One layer models the prob-
ability the poachers attack each target wherein the temporal effect
on the poachers’ behaviors is incorporated. The next layer predicts
the conditional probability of the rangers detecting any poaching
sign at a target given that the poachers attack that target. These two
layers are then integrated to predict the rangers’ final observations.
In our model, we incorporate the effect of the rangers’ patrols on
both layers, i.e., how the poachers adapt their behaviors accord-
ing to rangers’ patrols and how the rangers’ patrols determine the
rangers’ detectability of poaching signs. Furthermore, we consider
the poachers’ past activity in reasoning about future actions of the
poachers. We also include different domain features to predict ei-
ther attacking probabilities or detection probabilities or both.

3.1 Hierarchical Behavioral Model
We denote by T the number of time steps, N the number of tar-

gets, and K the number of domain features. At each time step t,
each target i is associated with a set of feature values xt,i = {xkt,i}
where k = 1 . . .K and xkt,i is the value of the kth feature at (t, i).
In addition, ct,i is defined as the coverage probability of the rangers
at (t, i). When the rangers patrol target i in time step t, they have
observation ot,i which takes an integer value in {−1, 0, 1}. Specif-
ically, ot,i = 1 indicates that the rangers observe a poaching sign
at (t, i), ot,i = 0 means that the rangers have no observation and
ot,i = −1 when the rangers did not patrol at (t, i). Furthermore,
we define at,i ∈ {0, 1} as the actual action of poachers at (t, i)
which is hidden from the rangers. Specifically, at,i = 1 indicates
the poachers attack at (t, i); otherwise, at,i = 0 means the poach-
ers did not attack at (t, i). In this work, we only consider the situ-
ation of attacked or not (i.e., at,i ∈ {0, 1}); the case of multiple-
level attacks is left for future work. Moreover, we mainly focus on
the problem of false negative observations, meaning that there may
still exist poaching activity at locations where the rangers found
no sign of poaching. We make the reasonable assumption that
there is no false positive observation, meaning that if the rangers
found any poaching sign at a target, the poachers did attack that
target. In other words, we have p(at,i = 1|ot,i = 1) = 1 and
p(ot,i = 1|at,i = 0) = 0.

at,i

ot,i ct,i

w

λ

i = 1…N

xt,i

§  Step t §  Step t-1

at-1,i

ot-1,i ct-1,i

w

λ

i = 1…N

xt-1,i

Figure 1: Dependencies among CAPTURE modeling elements

The graphical representation of the new model is shown in Fig-
ure 1 wherein the directed edges indicate the dependence between
elements of the model. The grey nodes refer to known elements for
the rangers such as domain features, the rangers’ coverages and ob-
servations while the white nodes represent the unknown elements
such as the actual actions of poachers. The elements (λ,w) are
model parameters which we will explain later.

Our new CAPTURE graphical model is a significant advance
over previous models from behavioral game theory, such as
QR/SUQR, and similarly models from conservation biology [11,
6]. First, unlike SUQR/QR which consider poachers behavior to
be independent between different time steps, we assume that the
poachers’ actions at,i depends on the poachers’ activities in the
past at−1,i and the rangers’ patrolling strategies ct,i. This is be-
cause poachers may tend to come back to the areas they have at-
tacked before. Second, CAPTURE considers a much richer set of
domain features {xkt,i} that have not been considered earlier but
are relevant to our domain, e.g., slope and habitat. Third, another
advance of CAPTURE is modeling the observation uncertainty in
this domain. We expect that the rangers’ observations ot,i depend
on the actual actions of the poachers at,i, the rangers’ coverage
probabilities ct,i and domain features {xkt,i} Finally, we adopt the
logistic model [4] to predict the poachers’ behaviors; one advantage
of this model compared to SUQR/QR is that it does not assume a
known number of attackers and models probability of attack at ev-
ery target independently. Thus, given the actual action of poachers,
at−1,i, at previous time step (t− 1, i), the rangers’ coverage prob-
ability ct,i at (t, i), and the domain features xt,i = {xkt,i}, we aim
at predicting the probability that poachers attack (t, i) as follows:

p(at,i = 1|at−1,i, ct,i,xt,i) =
eλ
′[at−1,i,ct,i,xt,i,1]

1 + e
λ′[at−1,i,ct,i,xt,i,1]

(5)

where λ = {λk} is the (K + 3)× 1 parameter vector which mea-
sure the importance of all factors towards the poachers’ decisions.
λK+3 is the free parameter and λ′ is the transpose vector of λ. In
essence, compared to Equation 4 where SUQR was seen to only
use three features, we now have a weighted sum over a much larger
number of features as is appropriate in our wildlife domain.

Furthermore, if the poachers attack at (t, i), we predict the prob-
ability that the rangers can detect any poaching signs as follows:

p(ot,i = 1|at,i = 1, ct,i,xt,i) = ct,i × ew
′[xt,i,1]

1 + ew
′[xt,i,1]

(6)

76

where the first term is the probability that the rangers are present at
(t, i) and the second term indicates the probability that the rangers
can detect any poaching sign when patrolling at (t, i). Additionally,
w = {wk} is the (K+1)×1 vector of parameters which indicates
the significance of domain features in affecting the rangers’ proba-
bility of detecting poaching signs. w′ is transpose of w. In QENP
specifically, CAPTURE employs seven features: animal density,
distances to rivers/roads/villages, net primary productivity (NPP),
habitat and slope to predict attacking/detection probabilities.

In the following, we will explain our approach for learning the
parameters (λ,w) of our hierarchical model. We use p(at,i =
1|at−1,i, ct,i) and p(ot,i = 1|at,i = 1, ct,i) as the abbreviations
of the LHSs in Equations 5 and 6. The domain features xt,i are
omitted in all equations for simplification.

3.2 Parameter Estimation
Due to the presence of unobserved variables a = {at,i}, we

use the standard Expectation Maximization (EM) method in order
to estimate (λ,w). In particular, EM attempts to maximize the
log-likelihood that the rangers can have observations o = {ot,i}
given the rangers’ coverage probabilities c = {ct,i} and domain
features x = {xt,i} for all time steps t = 1, . . . , T and targets
i = 1, . . . , N which is formulated as follows:

maxλ,w log p(o|c,x, λ,w) (7)

The standard EM procedure [4] is to start with an initial estimate
of (λ,w) and iteratively update the parameter values until a locally
optimal solution of (7) is reached. Many restarts are used with
differing initial values of (λ,w) to find the global optimum. Each
iteration of EM consists of two key steps:

• E step: compute p(a|o, c, (λ,w)old)

• M step: update (λ,w)old) = (λ∗,w∗) where (λ∗,w∗) =
argmax
λ,w

∑
a p(a|o, c, (λ,w)old) log(p(o,a|c, λ,w)).

In our case, the E (Expectation) step attempts to compute the
probability that the poachers take actions a = {at,i} given the
rangers’ observations o, the rangers’ patrols c, the domain features
x = {xt,i}, and current values of the model parameters (λ,w)old.
The M (Maximization) step tries to maximize the expectation of the
logarithm of the complete-data (o,a) likelihood function given the
action probabilities computed in the E step and updates the value
of (λ,w)old with the obtained maximizer.

Although we can decompose the log-likelihood, the EM algo-
rithm is still time-consuming due to the large number of targets and
parameters. Therefore, we use two novel ideas to speed up the al-
gorithm: parameter separation for accelerating the convergence of
EM and target abstraction for reducing the number of targets.
Parameter Separation. Observe that the objective in the M step
can be split into two additive parts as follows:
∑

a
p(a|o, c, (λ,w)old) log(p(o,a|c, λ,w)) (8)

=
∑

t,i

∑

at,i

p(at,i|o, c, (λ,w)old) log p(ot,i|at,i, ct,i,w)

+
∑

t,i

∑

at,i

∑

at−1,i

p(at,i, at−1,i|o, c, (λ,w)old) log p(at,i|at−1,i, ct,i, λ)

In (8), the first component is obtained as a result of decomposing
w.r.t the detection probabilities of the rangers at every (t, i) (Equa-
tion 6). The second one results from decomposing according to the
attacking probabilities at every (t, i) (Equation 5). Importantly, the
first component is only a function of w and the second component

is only a function of λ. Following this split, for our problem, the E
step reduces to computing the following two quantities:

Total probability: p(at,i|o, c, (λ,w)old) (9)

2-step probability: p(at,i, at−1,i|o, c, (λ,w)old) (10)

which can be computed by adapting the Baum-Welch algorithm [4]
to account for missing observations, i.e., ot,i = −1 when rangers
do not patrol at (t, i). This can be done by introducing p(ot,i =
−1|at,i, ct,i = 0) = 1 when computing (9) and (10).

More importantly, as shown in (8), the structure of our problem
allows for the decomposition of the objective function into two sep-
arate functions w.r.t attack parameters λ and detection parameters
w: F d(w)+F a(λ) where the detection function F d(w) is the first
term of the RHS in Equation 8 and the attack function F a(λ) is the
second term. Therefore, instead of maximizing F d(w) + F a(λ)
we decompose each iteration of EM into two E steps and two M
steps that enables maximizing F d and F a separately as follows:

• E1 step: compute total probability

• M1 step: w∗ = argmaxw F
d(w); update wold = w∗

• E2 step: compute 2-step probability

• M2 step: λ∗ = argmaxλ F
a(λ); update λold = λ∗

Note that the detection and attack components are simpler func-
tions compared to the original objective since these components
only depend on the detection and attack parameters respectively.
Furthermore, at each EM iteration, the parameters get closer to the
optimal solution due to the decomposition since the attack param-
eter is now updated based on the new detection parameters from
the E1/M1 steps instead of the old detection parameters from the
previous iteration. Thus, by decomposing each iteration of EM ac-
cording to attack and detection parameters, EM will converge more
quickly without loss of solution quality. The convergence and so-
lution quality of the separation can be analyzed similarly to the
analysis of multi-cycle expected conditional maximization [18].

Furthermore, the attack function F a(λ) is shown to be concave
by Proposition 1 (its proof is in Online Appendix A1), allowing us
to easily obtain the global optimal solution of the attacking param-
eters λ at each iteration of EM.

PROPOSITION 1. F a(λ) is concave in the attack parameters λ.

Target Abstraction. Our second idea is to reduce the number of
targets via target abstraction. Previous work in network security
and poker games has also applied abstraction for reducing the com-
plexity of solving these games by exploring intrinsic properties of
the games [2, 25]. In CAPTURE, by exploiting the spatial connec-
tivity between grid cells of the conservation area, we can divide the
area into a smaller number of grid cells by merging each cell in the
original grid with its neighbors into a single bigger cell. The corre-
sponding domain features are aggregated accordingly. Intuitively,
neighboring cells tend to have similar domain features. There-
fore, we expect that the parameters learned in both the original and
abstracted grid would expose similar characteristics. Hence, the
model parameters estimated based on the abstracted grid could be
effectively used to derive the parameter values in the original one.

In this work, we leverage the values of parameters learned in the
abstracted grid in two ways: (i) reduce the number of restarting
points (i.e., initial values of parameters) for reaching different local
optimal solutions in EM; and (ii) reduce the number of iterations
1https://www.dropbox.com/s/mngapyvv5112uhb/Appendix.pdf

77

…

…

…

…

…
 …

…

…

1 2 M1 M1-1

Abstraction Original

Iteration

Restart 1
Restart 2

Restart R

Reduce #restarts

…

M2<<M1 iterations

Restart 3

Restart R-1
Restart R-2

Figure 2: Target Abstraction

in each round of EM. The idea of target abstraction is outlined in
Figure 2 wherein each black dot corresponds to a set of parameter
values at a particular iteration given a specific restarting points. At
the first stage, we estimate the parameter values in the abstracted
grid given a large number of restarting points R, assuming that we
can run M1 EM iterations. At the end of the first stage, we obtain
R different sets of parameter values; each corresponds to a local
optimal solution of EM in the abstracted grid. Then at the sec-
ond stage, these sets of parameter values are used to estimate the
model parameters in the original grid as the following: (i) only a
subset of K resulting parameter sets which refer to the top local
optimal solutions in the abstracted grid are selected as initial val-
ues of parameters in the original grid; and (ii) instead of running
M1 EM iterations again, we only proceed with M2 << M1 iter-
ations in EM since we expect that these selected parameter values
are already well learned in the abstracted grid and thus could be
considered as warm restarts in the original grid.

4. PATROL PLANNING
Once the model parameters (λ,w) are learned, we can compute

the optimal patrolling strategies for the rangers in next time steps
taking into account the CAPTURE model. We consider two cir-
cumstances: 1) single-step patrol planning in which the rangers
only focus on generating the patrolling strategy at the next time
step and 2) multiple-step patrol planning for generating strategies
for the next ∆T > 1 time steps, given the rangers’ patrol and ob-
servation history and domain features. While the former provides a
one-step patrolling strategy with an immediate but short-term ben-
efit, the latter generates strategies across multiple time steps with a
long-term benefit. We leave the choice of which planning option to
use for the rangers given the cost/benefit trade-off between the two.
The key challenge in designing strategies for the rangers given the
CAPTURE model is that we need to take into account new aspects
of the modeling of the adversary. These include the rangers’ de-
tection uncertainty and the temporal dependency of the poachers’
activities. This challenge leads to a complicated non-convex opti-
mization problem to compute the optimal patrolling strategy for the
rangers; we provide novel game-theoretic algorithms to solve it.

We suppose that the rangers have an observation history o =
{ot′,i} for t′ = 1, . . . , T and i = 1, . . . , N . Similar to stan-
dard SSGs, we assume that if the poachers successfully attack
at (t, i), the rangers receive a penalty P dt,i. Conversely, if the
rangers successfully confiscate poaching tools at (t, i), the rangers
obtain a reward Rdt,i. Therefore, the rangers’ expected utility at
(t, i) if the poachers attack at (t, i) is computed as follows where
p(ot,i = 1|at,i = 1, ct,i) is the rangers’ detection probability at

(t, i) as shown in Equation 6:

Udt,i=p(ot,i = 1|at,i=1, ct,i)×[Rdt,i−P dt,i]+P dt,i (11)

We now explain in detail our new game-theoretic algorithms. The
rangers’ past patrols at (t′, i) for for t′ = 1, . . . , T and i =
1, . . . , N are already known and thus can be omitted in all follow-
ing mathematical formulations for simplification.

4.1 Single-step Patrol Planning
Given the rangers’ observation history o and the model parame-

ters (λ,w), the problem of computing the optimal strategies at the
next time step T + 1 can be formulated as follows:

max
{cT+1,i}

∑
i
p(aT+1,i = 1|o, cT+1,i)× UdT+1,i (12)

s.t. 0 ≤ cT+1,i ≤ 1, i = 1 . . . N (13)
∑

i
cT+1,i ≤ B (14)

where B is the maximum number of ranger resources and
p(aT+1,i = 1|o, cT+1,i) is the probability that the poachers at-
tack at (T + 1, i) given the rangers’ observation history o and the
rangers’ coverage probability cT+1,i. Since the poachers’ behav-
iors depends on their activities in the past (which is hidden to the
rangers), we need to examine all possible actions of the poach-
ers in previous time steps in order to predict the poachers’ at-
tacking probability at (T + 1, i). Hence, the attacking probabil-
ity p(aT+1,i = 1|o, cT+1,i) should be computed by marginalizing
over all possible actions of poachers at (T, i) as follows:

p(aT+1,i =1|cT+1,i,o) = (15)
∑

aT,i
p(aT+1,i = 1|aT,i, cT+1,i)× p(aT,i|o)

where p(aT+1,i|aT,i, cT+1,i), which is computed in (5), is the at-
tacking probability at (T + 1, i) given the poachers’ action aT,i
at (T, i) and the rangers’ coverage probability cT+1,i. In addition,
p(aT,i|o) is the total probability at (T, i) which can be recursively
computed based on the Baum-Welch approach as discussed in Sec-
tion 3. Overall, (12 – 14) is a non-convex optimization problem
in the rangers’ coverage probabilities {cT+1,i}. Fortunately, each
additive term of the rangers’ utility in (12) is a separate sub-utility
function of the rangers’ coverage, cT+1,i, at (T + 1, i):

fi(cT+1,i) = p(aT+1,i = 1|o, cT+1,i)× UdT+1,i (16)

Therefore, we can piecewise linearly approximate fi(cT+1,i) and
represent (12 – 14) as a Mixed Integer Program which can be
solved by CPLEX. The details of piecewise linear approximation
can be found at [31]. Essentially, the piecewise linear approxi-
mation method provides an O(1

M
)-optimal solution for (12 – 14)

where M is the number of piecewise segments [31].

4.2 Multi-step Patrol Planning
In designing multi-step patrol strategies for the rangers, there are

two key challenges in incorporating the CAPTURE model that we
need to take into account: 1) the time dependence of the poachers’
behavior; and 2) the actual actions of the poachers are hidden (un-
observed) from the rangers. These two challenges make the prob-
lem of planning multi-step patrols difficult as we show below.

Given that the rangers have an observation history o = {ot′i}
for t′ = 1, . . . , T and i = 1 . . . N , the rangers aim at gen-
erating patrolling strategies {ct,i} in next ∆T time steps where
t = T + 1, . . . , T + ∆T . Then the problem of computing the opti-
mal patrolling strategies for next ∆T time step T +1, . . . , T +∆T

78

can be formulated as follows:

max
{ct,i}

∑
t,i
p(at,i = 1|o, cT+1...t,i)U

d
t,i (17)

s.t. 0 ≤ ct,i ≤ 1, t = T + 1 . . . T + ∆T, i = 1 . . . N (18)
∑

i
ct,i ≤ B, t = T + 1 . . . T + ∆T. (19)

where p(at,i = 1|o, cT+1...t,i) is the attacking probability at (t, i)
given the rangers’ coverages at (t′, i) where t′ = T + 1, . . . , t and
observation history o = {ot′,i} where t′ = 1, . . . , T . Because of
the two aforementioned challenges, we need to examine all possi-
ble actions of the poachers in previous time steps in order to com-
pute the attacking probability at (t, i), p(at,i = 1|o, cT+1...t,i).
Our idea is to recursively compute this attacking probability via the
attacking probabilities at previous time steps as follows:

p(at,i = 1|o, cT+1...t,i) =
∑

at−1,i

p(at,i|at−1,i, ct,i)× (20)

p(at−1,i|o, cT+1...t−1,i)

where the initial step is to compute the total probability p(aT,i|o)
by using the Baum-Welch approach. Here, the objective in (17)
can be no longer divided into separate sub-utility functions of a
single coverage probability at a particular (t, i) because of the time
dependency of the poachers’ behaviors. Thus, we can not apply
piecewise linear approximation as in the single-step patrol planning
for solving (17 – 19) quickly. In this work, we use non-convex
solvers (i.e., fmincon in MATLAB) to solve (17 – 19).

In [9], the dependence of the attacker’s actions on the defender’s
patrolling strategies in the past is also considered; they assume that
the attacker’s responses follow the SUQR model while the attacker
perceives the defender’s current strategy as a weighted linear func-
tion of the defender’s strategies in the past. They also assume that
these weights are known, thereby making the computational prob-
lem easy. In contrast, we make the more realistic assumption that
the poachers are influenced by their own past observations and our
learning algorithm learns the weights corresponding to such influ-
ence from the data. Unfortunately, this makes the problem of plan-
ning multistep patrols more difficult as shown before.

5. EXPERIMENTS
We aim to (i) extensively assess the prediction accuracy of the

CAPTURE model compared to existing models based on real-
world wildlife/poaching data; (ii) examine the runtime performance
of learning the new model; and (iii) evaluate the solution quality of
the CAPTURE planning for generating patrols. In the following,
we provide a brief description of the real-world wildlife data used.

5.1 Real-world Wildlife/Poaching Data
In learning the poachers’ behavior, we use the wildlife data col-

lected by the rangers over 12 years from 2003 to 2014 in QENP
(Figure 3 with animal density). This work is accomplished in
collaboration with the Wildlife Conservation Society (WCS) and
Uganda Wildlife Authority (UWA). While patrolling, the park
rangers record information such as locations (latitude/longitude),
times, and observations (e.g., signs of human illegal activities).
Similar to [6], we also divide collected human signs into six
different groups: commercial animal (i.e., human signs such as
snares which refer to poaching commercial animals such as buffalo,
hippo and elephant), non-commercial animal, fishing, encroach-
ment, commercial plant, and non-commercial plant. In this work,
we mainly focus on two types of human illegal activities: commer-

cial animal and non-commercial animal which are major threats to
key species of concern such as elephants and hippos.

Figure 3: QENP with animal
density

The poaching data is then
divided into the four differ-
ent groups according to four
seasons in Uganda: dry sea-
son I (Jun, July, and Au-
gust), dry season II (De-
cember, January, and Febru-
ary), rainy season I (March,
April, and May), and rainy
season II (September, Octo-
ber, November). We aim
at learning behaviors of the
poachers w.r.t these four
seasons as motivated by the
fact that the poachers’ ac-
tivities usually vary season-
ally. In the end, we obtain
eight different categories of
wildlife data given that we
have the two poaching types and four seasons. Furthermore, we use
seven domain features in learning the poachers’ behavior, includ-
ing animal density, slope, habitat, net primary productivity (NPP),
and locations of villages/rivers/roads provided by [6].

We divide the park area into a 1km × 1km grid consisting of
more than 2500 grid cells (≈ 2500km2). Domain features and the
rangers’ patrols and observations are then aggregated into the grid
cells. We also refine the poaching data by removing all abnormal
data points such as the data points which indicate that the rangers
conducted patrols outside the QENP park or the rangers moved too
fast, etc. Since we attempt to predict the poachers’ actions in the
future based on their activities in the past, we apply a time window
(i.e., five years) with an 1-year shift to split the poaching data into
eight different pairs of training/test sets. For example, for the (com-
mercial animal, rainy season I) category, the oldest training/test
sets correspond to four-year data (2003–2006) w.r.t this category
for training and one-year (2007) data for testing. In addition, the
latest training/test sets refer to the four years (2010–2013) and one
year (2014) of data respectively. In total, there are eight different
training/test sets for each of our eight data categories.

5.2 Behavioral Learning
Prediction Accuracy. In this work, we compare the prediction ac-
curacy of six models: 1) CAPTURE (CAPTURE with parameter
separation); 2) CAP-Abstract (CAPTURE with parameter separa-
tion and target abstraction); 3) CAP-NoTime (CAPTURE with pa-
rameter separation and without the component of temporal effect);
4) Logit (Logistic Regression); 5) SUQR ; and 6) SVM (Support
Vector Machine). We use AUC (Area Under the Curve) to measure
the prediction accuracy of these behavioral models. Based on ROC
plots of data, AUC is a standard and common statistic in machine
learning for model evaluation [5]. Essentially, AUC refers to the
probability that a model will weight a random positive poaching
sample higher than a random negative poaching sample in labeling
these samples as positive (so, higher AUC values are better). For
each data category (w.r.t poaching types and poaching seasons), the
AUC values of all the models are averaged over the eight test sets
as explained in Section 5.1. We also show the average prediction
accuracy over all seasons. We use bootstrap-t [29] to measure the
statistical significance of our results.

The results are shown in Tables 1 and 2. We can infer the fol-
lowing key points from these tables. First, and most important,

79

Models Rainy I Rainy II Dry I Dry II Average
CAPTURE 0.76 0.76 0.74 0.73 0.7475

CAP-Abstract 0.79 0.76 0.74 0.67 0.74
CAP-NoTime 0.71 0.75 0.67 0.71 0.71

Logit 0.53 0.59 0.57 0.60 0.5725
SUQR 0.53 0.59 0.56 0.62 0.575
SVM 0.61 0.59 0.51 0.66 0.5925

Table 1: AUC: Commercial Animal

CAPTURE improves performance over the state of the art, which
is SUQR and SVM. CAPTURE’s average AUC in Table 1 (essen-
tially this is over 32 data points of eight test sets over four seasons)
is 0.7475 vs 0.575 for SUQR, and in Table 2 is 0.74 vs 0.57 for
SUQR. This clearly shows a statistically significant (α = 0.05)
advance in our modeling accuracy. This improvement illustrates
that all the four advances in CAPTURE mentioned in Section 1
— addressing observation error, time dependence, detailed domain
features and not requiring a firm count of poachers beforehand –
have indeed led to a significant advance in CAPTURE’s perfor-
mance. We can now attempt to understand the contributions of each
of CAPTURE’s improvements, leading to the next few insights.
Second, comparison of CAPTURE with CAP-NoTime which only
addresses the challenge of observation bias demonstrates the im-
portance of considering time dependence. Third, while parameter
separation does not cause any loss in solution quality as discussed
in Section 3.2, Tables 1 and 2 shows that the prediction accuracy of
CAPTURE with target abstraction is good in general except for Dry
season II with Commercial Animal. As we show later, parameter
separation and target abstraction help in speeding up the runtime
performance of learning the CAPTURE model.

Fourth, the results of the model parameter values in the
CAPTURE model show that all these domain features sub-
stantially impact the poachers’ behaviors. For example, one
learning result on the model parameters corresponding to the
category (non-commercial animal/dry season I) in 2011 is
(0.33, 1.46,−2.96,−1.97, 1.88,−0.78, 0.36) for domain features
(habitat, NPP, slope, road distance, town distance, water dis-
tance, and animal density), −1.40 for the rangers’ coverage prob-
ability and 4.27 for the poachers’ past action. Based on these
learned weights, we can interpret how these domain features af-
fect the poachers’ behavior. Specifically, the negative weights for
road/water distances indicates that the poachers tend to poach at lo-
cations near roads/water. In addition, the resulting positive weight
for the poachers’ past actions indicates that the poachers are more
likely to attack the targets which were attacked before. Further-
more, the resulting negative weight for the rangers’ patrols also
shows that the poachers’ activity is influenced by the rangers’ pa-
trols, i.e., the poachers are less likely to attack targets with higher
coverage probability of the rangers. Lastly, the ranger-poacher
interaction changes over time as indicated by different negative
weights of the rangers’ patrols across different years (Table 3).
For example, the patrol weight corresponding the category (non-
commercial animal/dry season II) in 2014 is−17.39 while in 2013
is -1.78, showing that rangers’ patrols have more impact on the
poachers’ behavior in 2014 than in 2013. This is the first time there
is a real-world evidence which shows the impact of ranger patrols
on poacher behavior.
Runtime Performance. We compare the runtime performance of
learning the CAPTURE model in three cases: 1) learning without
both heuristics of parameter separation and target abstraction; 2)
learning with parameter separation only; and 3) learning with both

Models Rainy I Rainy II Dry I Dry II Average
CAPTURE 0.76 0.70 0.78 0.72 0.74

CAP-Abstract 0.76 0.70 0.74 0.70 0.725
CAP-NoTime 0.72 0.68 0.75 0.70 0.7125

Logit 0.52 0.63 0.57 0.52 0.56
SUQR 0.54 0.62 0.58 0.54 0.57
SVM 0.42 0.50 0.55 0.56 0.5075

Table 2: AUC: Non-Commercial Animal

Year 2009 2010 2011 2012 2013 2014
Weight -10.69 -4.35 -0.7 -2.21 -1.78 -17.39

Table 3: Patrol weights in recent years

heuristics. In our experiments, for the first two cases, we run 20
restarting points and 50 iterations in EM. In the third case, we first
run 20 restarting points and 40 iterations in EM with target abstrac-
tion. In particular, in target abstraction, we aggregate or interpolate
all domain features as well as the rangers’ patrols into 4km×4km
grid cells while the original grid cell size is 1km × 1km. Then
given the results in the abstracted grid, we only select 5 results of
parameter values (which correspond to the top five prediction accu-
racy results w.r.t the training set). We use these results as restarting
points for EM in the original grid and only run 10 iterations to ob-
tain the final learning results in the original grid.

Heuristics Average Runtime
None 1419.16 mins

Parameter Separation 333.31 mins
Parameter Separation w/ Target Abstraction 222.02 mins

Table 4: CAPTURE Learning: Runtime Performance

The results are shown in Table 4 which are averaged over 64
training sets (statistically significant (α = 0.05)). In Table 4,
learning CAPTURE model parameters with parameter separation
is significantly faster (i.e., 4.25 times faster) than learning CAP-
TURE without this heuristic. This result clearly shows that reduc-
ing the complexity of the learning process (by decomposing it into
simpler sub-learning components via parameter separation) signif-
icantly speeds up the learning process of CAPTURE. Furthermore,
the heuristic of target abstraction helps CAPTURE in learning even
faster although the result is not as substantial as with parameter sep-
aration, demonstrating the advantage of using this heuristic.

5.3 Patrol Planning
Based on the CAPTURE model, we apply our CAPTURE plan-

ning algorithm (Section 4) to compute the optimal patrolling strate-
gies for the rangers. The solution quality of our algorithm is eval-
uated based on the real-world QENP domain in comparison with
SUQR (i.e., optimal strategies of the rangers against SUQR-based
poachers), Maximin (maximin strategies of the rangers against
worst-case poacher responses), and Real-world patrolling strategies
of the rangers. The real-world strategies are derived from the four
seasons in years 2007 to 2014. Given that CAPTURE’s prediction
accuracy is the highest among all the models, in our experiments,
we assume that the poachers’ responses follow our model. Given
the QENP experimental settings, the reward of the rangers at each
target are set to be zero while the penalty is the opposite of the

80

animal density (i.e., zero-sum games). We assess the solution qual-
ity of all algorithms according to different number of the rangers’
resources (i.e., number of targets the rangers can cover during a
patrol). The real-world patrolling strategies are normalized accord-
ingly. Moreover, we also consider different number of time steps
for generating patrols.

(a) 2 time steps (b) 4 time steps

Figure 4: Solution quality of CAPTURE-based planning

The experimental results are shown in Figure 4 which are av-
eraged over all years and seasons. In Figure 4, the x-axis is the
number of the rangers’ resources and the y-axis is the aggregated
utility the rangers receive over two and four time steps (seasons) for
playing CAPTURE, SUQR, Maximin, and Real-world patrolling
strategies respectively. As shown in Figure 4, our CAPTURE plan-
ning algorithm provides the highest utility for the rangers (with
statistical significance (α = 0.05)). Especially when the number
of the rangers’ resources increases, the CAPTURE planning algo-
rithm significantly improves the quality of the rangers’ patrolling
strategies. Furthermore, our CAPTURE algorithm provides pa-
trolling strategies which take into account the temporal effect on
the poachers’ behaviors. As a result, when the number of time
steps increases (Figure 4(b)), our algorithm enhances its solution
quality compared to the others.

6. CAPTURE-BASED APPLICATION
CAPTURE tool is available for the rangers to predict the poach-

ers’ behavior and design optimal patrol schedules. Not all the re-
gions are equally attractive to the poachers, so it is beneficial to
detect the hotspots and favorite regions for poachers and protect
those areas with higher probability. The general work-flow for this
software could be itemized as: 1) Aggregating previously gathered
data from the park to create a database that includes domain fea-
tures, poaching signs and rangers’ effort to protect the area; 2) Pre-
processing of the data points; 3) Running the CAPTURE tool to
predict the attacking probability, rangers’ observation over the area
and generate the optimal patrol strategy; and 4) Post-processing of
the results and generating the related heatmaps.

To compare the optimal strategy generated by the single-step pa-
trol planning algorithm provided by CAPTURE and current real
strategy deploying over the area, we plotted the related heatmaps
according to the defender coverage, shown in Figure 5(a) and Fig-
ure 6(a). The darker the area, the greater chance to be covered by
the rangers. Also, we used CAPTURE to predict the probability
of the attack based on these patrol strategies. These heatmaps are
shown in Figure 5(b) and Figure 6(b). The darker regions on the
map demonstrate the more attractive regions to the poachers.

We can see the following key points based on the heatmaps: (i)
The optimal patrol strategy covers more of the regions with higher
animal density (for instance south-west and middle parts of the park
as shown in Figure 3). So the deployment of the optimal strategy
would result in more protection to areas with higher animal density,
as shown in Figure 6(a) and 6(b). (ii) The poaching heatmap shows
significantly higher predicted activity of attackers against human

(a) Patrol strategy (b) Attack probability

Figure 5: Heatmaps by CAPTURE (based on the real patrol strategy)

(a) Patrol strategy (b) Attack probability

Figure 6: Heatmaps by CAPTURE (based on the optimal strategy)

generated patrols in regions with higher animal density, as shown
in Figure 5(a) and 5(b).

7. CONCLUSION
We propose a new predictive anti-poaching tool, CAPTURE. Es-

sentially, CAPTURE introduces a novel hierarchical model to pre-
dict the poachers’ behaviors. The CAPTURE model provides a
significant advance over the state-of-the-art in modeling poachers
in security games [8] and in conservation biology [11, 6] via 1) ad-
dressing the challenge of imperfect observations of the rangers; 2)
incorporating the temporal effect on the poachers’ behaviors; and
3) not requiring a known number of attackers. We provide two new
heuristics: parameter separation and target abstraction to reduce
the computational complexity in learning the model parameters.
Furthermore, CAPTURE incorporates a new planning algorithm to
generate optimal patrolling strategies for the rangers, taking into
account the new complex poacher model. Finally, this application
presents an evaluation of the largest sample of real-world data in the
security games literature, i.e., over 12-years of data of attacker de-
fender interactions in QENP. The experimental results demonstrate
the superiority of our model compared to other existing models.
CAPTURE will be tested in QENP in early 2016.

Acknowledgements: This research was supported by MURI Grant
W911NF-11-1-0332 and by CREATE under grant number 2010-ST-061-
RE0001. We are grateful to the Wildlife Conservation Society, Uganda
Wildlife Authority, MacArthur Foundation, USAID, US Fish and Wildlife
Service, and Daniel K. Thorne Foundation for supporting the data collec-
tion in Queen Elizabeth National Park. We wish to acknowledge the support
of the University of York. We would like to thank Bazil Andira and all the
rangers and wardens in Queen Elizabeth National Park for their contribution
in collecting the law enforcement monitoring data in MIST.

81

REFERENCES
[1] D. Avrahami-Zilberbrand and G. A. Kaminka. Keyhole

adversarial plan recognition for recognition of suspicious and
anomalous behavior. In Plan, Activity, and Intent
Recognition, pages 87–121. 2014.

[2] N. Basilico and N. Gatti. Automated abstractions for
patrolling security games. In AAAI, 2011.

[3] N. Basilico, N. Gatti, and F. Amigoni. Leader-follower
strategies for robotic patrolling in environments with
arbitrary topologies. In AAMAS, 2009.

[4] C. M. Bishop. Pattern recognition and machine learning.
springer, 2006.

[5] A. P. Bradley. The use of the area under the roc curve in the
evaluation of machine learning algorithms. Pattern
recognition, 30(7):1145–1159, 1997.

[6] R. Critchlow, A. Plumptre, M. Driciru, A. Rwetsiba,
E. Stokes, C. Tumwesigye, F. Wanyama, and C. Beale.
Spatiotemporal trends of illegal activities from
ranger-collected data in a ugandan national park.
Conservation Biology, 2015.

[7] J. S. De Bruin, T. K. Cocx, W. Kosters, J. F. Laros, J. N. Kok,
et al. Data mining approaches to criminal career analysis. In
Data Mining, 2006. ICDM’06. Sixth International
Conference on, pages 171–177. IEEE, 2006.

[8] F. Fang, T. H. Nguyen, R. Pickles, W. Y. Lam, G. R.
Clements, B. An, A. Singh, M. Tambe, and A. Lemieux.
Deploying paws: Field optimization of the protection
assistant forwildlife security. In IAAI, 2016.

[9] F. Fang, P. Stone, and M. Tambe. When security games go
green: Designing defender strategies to prevent poaching and
illegal fishing. In IJCAI, 2015.

[10] S. Ganzfried and T. Sandholm. Game theory-based opponent
modeling in large imperfect-information games. In The 10th
International Conference on Autonomous Agents and
Multiagent Systems-Volume 2, pages 533–540. International
Foundation for Autonomous Agents and Multiagent
Systems, 2011.

[11] H. HOFER, K. L. CAMPBELL, M. L. EAST, and S. A.
HUISH. Modeling the spatial distribution of the economic
costs and benefits of illegal game meat hunting in the
serengeti. Natural Resource Modeling, 13(1):151–177, 2000.

[12] D. Kar, F. Fang, F. D. Fave, N. Sintov, and M. Tambe. A
game of thrones: When human behavior models compete in
repeated stackelberg security games. In International
Conference on Autonomous Agents and Multiagent Systems
(AAMAS 2015), 2015.

[13] D. Korzhyk, V. Conitzer, and R. Parr. Complexity of
computing optimal stackelberg strategies in security resource
allocation games. In AAAI, 2010.

[14] J. Letchford and Y. Vorobeychik. Computing randomized
security strategies in networked domains. In AARM, 2011.

[15] D. I. MacKenzie, J. D. Nichols, G. B. Lachman, S. Droege,
J. Andrew Royle, and C. A. Langtimm. Estimating site
occupancy rates when detection probabilities are less than
one. Ecology, 83(8):2248–2255, 2002.

[16] D. McFadden. Conditional logit analysis of qualitative
choice behavior. Technical report, 1972.

[17] R. McKelvey and T. Palfrey. Quantal response equilibria for
normal form games. Games and economic behavior,
10(1):6–38, 1995.

[18] X.-L. Meng and D. B. Rubin. Maximum likelihood
estimation via the ecm algorithm: A general framework.
Biometrika, 80(2):267–278, 1993.

[19] M. Montesh. Rhino poaching: A new form of organised
crime1. Technical report, University of South Africa, 2013.

[20] S. V. Nath. Crime pattern detection using data mining. In
Web Intelligence and Intelligent Agent Technology
Workshops, 2006. WI-IAT 2006 Workshops. 2006
IEEE/WIC/ACM International Conference on, pages 41–44.
IEEE, 2006.

[21] T. H. Nguyen, F. M. Delle Fave, D. Kar, A. S.
Lakshminarayanan, A. Yadav, M. Tambe, N. Agmon, A. J.
Plumptre, M. Driciru, F. Wanyama, et al. Making the most of
our regrets: Regret-based solutions to handle payoff
uncertainty and elicitation in green security games. In
GameSec, 2015.

[22] T. H. Nguyen, R. Yang, A. Azaria, S. Kraus, and M. Tambe.
Analyzing the effectiveness of adversary modeling in
security games. In AAAI, 2013.

[23] G. Oatley, B. Ewart, and J. Zeleznikow. Decision support
systems for police: Lessons from the application of data
mining techniques to “soft” forensic evidence. Artificial
Intelligence and Law, 14(1-2):35–100, 2006.

[24] U. H. C. on Foreign Affairs. Poaching and terrorism: A
national security challenge (serial no. 114-25).
Washington:US Government Publishing Office, April 2015.

[25] T. Sandholm and S. Singh. Lossy stochastic game abstraction
with bounds. In EC, pages 880–897. ACM, 2012.

[26] G. Secretariat. Global tiger recovery program
implementation plan: 2013-14. Report, The World Bank,
Washington, DC, 2013.

[27] F. Southey, M. P. Bowling, B. Larson, C. Piccione, N. Burch,
D. Billings, and C. Rayner. Bayes’ bluff: Opponent
modelling in poker. arXiv preprint arXiv:1207.1411, 2012.

[28] M. Tambe. Security and Game Theory: Algorithms,
Deployed Systems, Lessons Learned. Cambridge University
Press, 2011.

[29] R. Wilcox. Applying contemporary statistical techniques.
Academic Press, 2002.

[30] R. Yang, B. Ford, M. Tambe, and A. Lemieux. Adaptive
resource allocation for wildlife protection against illegal
poachers. In AAMAS, 2014.

[31] R. Yang, F. Ordonez, and M. Tambe. Computing optimal
strategy against quantal response in security games.
AAMAS, 2012.

[32] C. Zhang, A. Sinha, and M. Tambe. Keeping pace with
criminals: Designing patrol allocation against adaptive
opportunistic criminals. In AAMAS, 2015.

82

Applying Multi-Agent Reinforcement Learning to
Watershed Management

Karl Mason
Discipline of Information

Technology
National University of Ireland

Galway
k.mason2@nuigalway.ie

Patrick Mannion
Discipline of Information

Technology
National University of Ireland

Galway
p.mannion3@nuigalway.ie

Jim Duggan
Discipline of Information

Technology
National University of Ireland

Galway
jim.duggan@nuigalway.ie

Enda Howley
Discipline of Information

Technology
National University of Ireland

Galway
ehowley@nuigalway.ie

ABSTRACT
Multi-Agent Reinforcement Learning (MARL) is an area of
research that combines Reinforcement Learning (RL) with
Multi-Agent Systems (MAS). In MARL, agents learn over
time by trial and error, what actions to take depending on
the state of the environment. The focus of this paper will
be to apply MARL to the Watershed management problem.
This problem is complex due to the constrained nature of
it. The problem consists of a series of interested parties,
all seeking to withdraw water from a river in order to irri-
gate farms, supply a city and produce energy. Enough water
must also be available for the surrounding ecosystem. In this
paper, the problem is defined and tailored to the MARL
algorithm by discretizing the problem space. In order to
gauge the performance of the MARL algorithm, it is then
also compared to a state of the art heuristic optimisation
algorithm, Particle Swarm Optimisation (PSO). The results
of this paper reveal that the MARL algorithm can consis-
tently produce valid solutions however it performs worse on
average than the PSO. Interestingly, the granularity of the
problem is not the reason for the sub optimal performance of
MARL. In some cases the performance of MARL is nearly
as good as the PSO, and in terms of convergence, MARL
performs better.

Categories and Subject Descriptors
I.2.6 [Artificial Intelligence]: Learning; I.2.11 [Artificial
Intelligence]: Distributed Artificial Intelligence—Multia-
gent systems

General Terms
Algorithms, Experimentation, Performance

Keywords
Reinforcement Learning, Continuous Action Space, Water-
shed Management, Multi-Agent Systems, Multi-Agent Re-
inforcement Learning, Particle Swarm Optimisation

1. INTRODUCTION
Multi-Agent System (MAS) consists of multiple autonomous

agents acting independently in the same environment. Agents
in a cooperative MAS are designed to work together to
achieve a system-level goal [24]. This can be thought of as
solving an optimisation problem. Numerous complex, real
world systems have been successfully optimised using the
MAS framework. A small sample of these would include
air traffic control [19], traffic signal control [3] [11], energy
production [12] and data routing in networks [23].

Reinforcement Learning (RL) has proven to be success-
ful in developing suitable joint policies for cooperative MAS
in all of the problem domains mentioned above. RL agents
learn by maximising a scalar reward signal from the envi-
ronment, and thus the design of the reward function directly
affects the policies learned. The issue of credit assignment
in Multi-Agent Reinforcement Learning (MARL) is an area
of active research with numerous open questions, especially
so when considering multi-objective problem domains.

In this paper the performance of MARL will be compared
to a heuristic optimisation in order gauge its performance.
The optimisation algorithm that it will be compared to is
Particle Swarm Optimisation (PSO) [10]. PSO is an op-
timisation algorithm that consists of a number of particles
exploring a problem space and ultimately converging on a so-
lution. The particles evaluate potential solutions and share
information with one another. This information is used to
direct their movement so that they move towards the best
known solutions. Currently, topics such as particle memory
[6], particle movement [13] and neighbourhood topologies
[14] are very active research areas in PSO. The PSO algo-
rithm has been applied to numerous real world problem do-
mains since its first proposal. These include design, schedul-
ing and routing problems across several disciplines and in-
dustries ranging from imaging to energy production [1]. PSO
has been chosen as the benchmark to which MARL will be
compared to because it is a state of the art optimisation
algorithm. It is designed to optimise problems with contin-
uous variables such as the Watershed Management problem.
A comparison between MARL and PSO will therefore give

83

a more detailed and accurate account of the performance of
MARL for problems with continuous variables.

Both the MARL algorithm and the PSO algorithm will be
applied to the Watershed Management problem [25]. This
problem is essentially a resource management problem. The
resource in question is water. There are a number of inter-
ested parties that wish to withdraw water from the system.
These include water to sustain a city, water for farm irriga-
tion, water for hydroelectric power generation and water for
the surrounding ecosystem. The problem consists of many
constraints and multiple flow scenarios. MAS has been ap-
plied to this problem previously, however not using RL [2].

The contributions of this paper are as follows:

1. To apply Multi-Agent Reinforcement Learning to the
Watershed Management problem.

2. To compare the performance of MARL to Particle Swarm
Optimisation (PSO).

The rest of the paper is structured as follows: Section 2
will highlight the related research in the area of Reinforce-
ment Learning, Multi-Agent Reinforcement Learning and
Particle Swarm Optimisation. Section 3 will present the
Watershed Management problem. In Section 4, the appli-
cation of MARL and PSO to the Watershed problem will
be outlined. The experimental procedure will be detailed in
Section 5. The results will be presented in Section 6 and
finally, the conclusions that can be drawn from these results
will be made in Section 7. Here, future work will also be
outlined.

2. RELATED WORK

2.1 Reinforcement Learning
Reinforcement Learning is an area of Machine Learning

research, in which autonomous software agents have the ca-
pability to learn through trial and error. An RL agent in-
teracts with its environment, without any prior knowledge
of the environment or how to behave. When the agent per-
forms an action, it then receives a reward signal r based on
the outcomes of selected action, which can be either neg-
ative or positive. Markov Decision Processes (MDPs) are
considered to be the standard when framing problems in-
volving a single agent learning sequential decision making
[22]. A MDP consists of a reward function R, set of states
S, set of actions A, and a transition function T [15], i.e. a
tuple < S,A, T,R >. When in any state s ∈ S, selecting an
action a ∈ A will result in the environment entering a new
state s′ ∈ S with probability T (s, a, s′) ∈ (0, 1), and give a
reward r = R(s, a, s′).

An agent’s policy π dictates the behaviour of the agents
in its environment. The agent’s policy is what determines
what action the agent will take for a given state. The aim of
any MDP is to find the optimum policy (one which returns
the highest expected sum of discounted rewards) [22]. The
optimum policy for a MDP is denoted π*. It is therefore
important to implement an appropriate reward function for
a particular environment. This is because the agent will use
this reward to ultimately learn its policy.

RL can be separated into two categories: model-based,
e.g. Rmax & Dyna, and model-free, e.g. Q-Learning &
SARSA. For model-based RL algorithms, the agents at-
tempt to learn the transition function T , which will then be

used when selecting actions. This is not the case in model-
free approaches where no information about T is assumed.
In model-free methods, the agent instead interacts directly
with the MDP. As a result, the agent will build its own
model of the environment in the form of a Q matrix.

One of the most effective and popular RL algorithms is Q-
Learning [21]. It is an off-policy, model-free RL algorithm
that has been proven to converge to the optimum action-
values with probability 1, so long as all actions are repeat-
edly sampled in all states and the possible actions which the
agent may take are discrete [20]. The following equation is
used in the Q-Learning algorithm to update the Q values:

Q(s, a)← Q(s, a) + α[r + γmax
a′

Q(s′, a′)−Q(s, a)] (1)

where α ∈ [0, 1] is the learning rate and γ ∈ [0, 1] is the
discount factor.

In order to give a fair comparison between MARL and
PSO, a model free method will be implemented with MARL.
The particles in PSO have no prior knowledge of the problem
being optimised. For this reason, the agents in MARL will
also be implemented without any prior knowledge.

2.2 Multi-Agent Reinforcement Learning
In order to implement RL in a multi-agent setting, a

more general problem framework is needed than MDP. The
Stochastic Game (SG) setting provides a suitable frame-
work for increasing the number of learning agents simul-
taneously interacting in the same environment, i.e. Multi-
Agent Systems (MAS) [7]. A SG is defined as a tuple <
S,A1...n, T,R1...n >, where n is the number of agents, S is
the set of states, Ai is the set of actions for agent i (and A
is the joint action set), T is the transition function, and Ri
is the reward function for agent i.

The SG setting is sufficiently similar to the MDP setting,
whereby it is suitable for implementing RL. The key differ-
ence is that it also allows for the addition of multiple agents.
For the case where the number of agents reduces to 1, a SG
is reduced to a MDP. The next environment state and the
rewards received by each agent depend on the joint action
of all of the agents in the SG. Note also that each agent may
receive a different reward for a state transition, as each agent
has its own separate reward function. In a SG, the agents
may all have the same goal (collaborative SG), totally op-
posing goals (competitive SG), or there may be elements of
collaboration and competition between agents (mixed SG).

There are two different approaches that are commonly
used when RL is applied to MAS: multiple individual learn-
ers or joint action learners. In the case of multiple individual
learners, each agent learns by itself using its own RL algo-
rithm. This is not the case for joint action learners. These
agents take into account for other learners by implement-
ing multi-agent that are specifically designed to acknowl-
edge and address other agents. When many self-interested
agents learn and act simultaneously in the same environ-
ment, in general it is not possible for all agents to achieve the
maximum possible individual reward. Therefore, MAS will
typically converge to a Nash Equilibrium [17]. It is possible
for multiple individual learning agents to converge whereby
they establish equilibrium, there is no theoretical guarantee
that the collective policy will be the optimum Nash Equilib-
rium.

A well known problem encountered in agent based systems

84

is the credit assignment problem. In single-agent systems,
this is referred to the temporal credit assignment problem.
When an agent must make a series of decisions before it re-
ceives any feedback, how can the agent know if an individ-
ual decision was good or bad? In muti-agent systems, the
problem is referred to as the structural credit assignment
problem. This problem corresponds to the task of assigning
credit or blame to each agent for the overall performance
of the system, i.e. how can it be determined which agents
performed well and which agents performed poorly?

2.3 Continuous State Action Spaces
As previously mentioned, an agents search space com-

prises of states and actions. Most applications of RL involve
an agent learning in a discrete environment by taking dis-
crete actions. Algorithms such as Q-learning are well suited
to these sorts of problems. However many problems are not
discrete in nature. The state of the environment or the range
of possible actions can also be continuous.

Typically in order to address problems with continuous
state spaces, function approximation is used to estimate
states. Neural networks are commonly used as function ap-
proximators [4].

The most common approach used when applying RL to
continuous action spaces involves discretizing the range of
possible actions that the agent may take. Algorithms that
implement this approach would include Cerebellar Model
Articulation Controllers (CMACs) [16] and variable resolu-
tion discretization [9].

The Watershed Management problem, that will be de-
scribed in Section 3, consists of discrete states and continu-
ous actions. As a result of this, function approximation will
not be needed to estimate the state of the environment. The
continuous action space will be addressed by discretizing it.

2.4 Particle Swarm Optimisation
The PSO algorithm consists of a number of particles whose

purpose is to evaluate candidate solutions and eventually
move towards the best solution [10]. Initially these parti-
cles are distributed throughout the problem space with a
random position and random velocity. The position and ve-
locity of a particle at a time t are referred to as xt and vt
respectively. At each iteration i, each particle evaluates its
position within the problem space defined by an objective
function. This objective function measures the fitness of the
particles current position which represents a candidate so-
lution. Every particle remembers its previous best position.
If a new position has a better fitness than the previous best
position for that particle, the particle will remember this
new position as its personal best position pb. Each particle
also has access to the best position within its neighbour-
hood of particles gb. The other particles within a particle’s
neighbourhood are dictated by the topology used. Figure 1
shows three common topologies used. Each particle updates
its velocity, and as a result its position, using its own best
position and that of its neighbours. Balancing this cognitive
and social behaviour is critical to the success of the PSO.
The motion of the particles throughout the problem space
is defined by their equations of motion below:

vt+1 = χ(vt + r1c1(pbt − xt) + r2c2(gbt − xt) (2a)

xt+1 = xt + vt (2b)

Where r1 and r2 are random numbers between 0 and 1.
The terms c1 and c2 = 2.05 are acceleration coefficients.
The χ term is the constriction factor and is defined as:

χ =
2

|2− ϕ−
√
ϕ2 − 4ϕ|

(3a)

ϕ = c1 + c2 (3b)

With χ ≈ 0.72984, and c1 = c2 = 2.05 [8]. As the particles
move around the problem space and evaluate candidate so-
lutions, they should eventually converge on the best solution
as a result of the constriction factor. The above definition
of the various PSO parameters is considered to be standard
[5]. The pseudo-code in Algorithm 1 below describes the
structure of the PSO algorithm.

Create N particles with random position and velocity
while Iteration i <Imax do
for Particle = 1 to N do

Update personal best position
Update neighbourhood best position
Evaluate particle’s current position
Update particle’s velocity
Update particle’s position

end

end
Return best solution

Algorithm 1: PSO Algorithm

Figure 1: Neighbourhood Topologies

3. WATERSHED PROBLEM
As mentioned in the introduction, the Watershed problem

is a resource management problem which consists of multiple
agents. Each of these agents are withdrawing water from a

85

common and finite supply for their own purposes. This prob-
lem has multiple objectives and constraints, and consists of
continuous variables. There are 6 variables which must be
optimised, 4 of which are controlled directly, the remaining
2 are reactive variables which are indirectly optimised. The
4 direct variables are the water withdrawn from the river
for municipal and industrial use in the city (x1), the water
withdrawn for the irrigation of farms (x4 and x6) and finally
the water released from a dam for hydro power generation
(x2). The 2 reactive variables are the water available for
the ecosystems (x3 and x5). Each of these variables must
be selected to maximise a series of objective functions repre-
senting the benefits obtained from the water by the various
interested parties.

The benefit of the water withdrawn for the city is repre-
sented by the function below:

f1(x1) = a1x
2
1 + b1x1 + c1 (4)

The benefit obtained by the first farm is represented by
the following objective function:

f4(x4) = a4x
2
4 + b4x4 + c4 (5)

The benefit obtained by the second farm is represented by
the following objective function:

f6(x6) = a6x
2
6 + b6x6 + c6 (6)

The final objective function which is directly optimised,
represents the benefit obtained from the generation of hy-
droelectric power:

f2(x2) = a2x
2
2 + b2x2 + c2 (7)

Each of the previously mentioned objective functions (Equa-
tions 4 - 7) are all directly optimised. The following two
objective functions are indirectly optimised. The benefit
obtained from the water available to the first ecosystem is
represented by the following function:

f3(x3) = a3x
2
3 + b3x3 + c3 (8)

Similarly, the benefit obtained from the water available to
the second ecosystem is represented by the following objec-
tive function:

f5(x5) = a5x
2
5 + b5x5 + c5 (9)

In each of the aforementioned equations (4 - 9), ai, bi
and ci are dimensionless constants [25]. Their values are
highlighted in the following table, along with the values for
αi which represents the minimum values for xi in L3, where
i represents each objective.

Table 1: Watershed Constants

Parameter Value Parameter Value Parameter Value Parameter Value (L3)

a1 -0.20 b1 6 c1 -5 α1 12
a2 -0.06 b2 2.5 c2 0 α2 10
a3 -0.29 b3 6.28 c3 -3 α3 8
a4 -0.13 b4 6 c4 -6 α4 6
a5 -0.056 b5 3.74 c5 -23 α5 15
a6 -0.15 b6 7.6 c6 -15 α6 10

Since the indirect variables, x3 and x5, are not directly
controlled, they must be calculated using the following equa-

tions:

x3 = Q2 − x4 (10a)

x5 = x2 + x3 − x6 (10b)

Where Q2 is the monthly tributary inflow in L3. The
values for Q2 will be outlined later. Each equation (4 - 9)
is subject to the following constraints which restrict their
values.

α1 − x1 ≤ 0 (11a)

α2 −Q1 + x1 ≤ 0 (11b)

x2 − S −Q1 + x1 ≤ 0 (11c)

α4 − x3 ≤ 0 (11d)

α3 − x4 ≤ 0 (11e)

α4 −Q2 + x4 ≤ 0 (11f)

α6 − x5 ≤ 0 (11g)

α5 − x6 ≤ 0 (11h)

α6 − x2 − x3 + x6 ≤ 0 (11i)

Where S represents the storage capacity of the dam in
L3 and Q1 represents the monthly inflow of water into the
mainstream in L3.

The values for the monthly inflow of water, represented by
Q1 and Q2, and the dam storage capacity S are highlighted
in the following table:

Table 2: Watershed Flow Conditions

Scenario Q1 (L3) Q2 (L3) S (L3)

1 160 65 15
2 115 50 12
3 80 35 10

The Watershed problem can be formulated as optimising
the following equation subject to the constraints highlighted
in Equation 11.

F (x) = max

6∑

i=1

fi(xi) (12)

The Watershed problem is graphically illustrated in the
following diagram from the research of Yang et al. [25].

4. APPLICATION OF MARL & PSO
At this point, the application of MARL to the Watershed

problem will be outlined. In order to optimise the water
taken from the river, an agent will be assigned to control the
variables x1, x4, x6 and x2. As such, there will be 4 agents
directly optimising 4 variables and indirectly optimising 2
variables (x3 and x5) for the 3 previously mentioned flow
rates. These same 4 direct variables will form the position
for the particles in PSO. The particles will traverse a 12D
problem space (4 direct variables × 3 flow rates).

4.1 Boundary Definition

86

Figure 2: Watershed Illustration [25]

In order to apply either algorithm, the maximum and min-
imum possible values for each direct variable must first be
explicitly defined. This is because each algorithm requires
limits to define its search space. The minimum possible val-
ues for each variable (x1, x4, x6 and x2) can simply be de-
fined as the minimum water requirement αi for each xi. The
maximum possible values are slightly more complex as they
depend on Q1, Q2 and S, which change depending on the
flow scenario, and also on other x values in some cases. This
is illustrated in the constraints described in Equation 11.
These maximum possible values must be defined in terms
of the fixed problem constants, rather than other variables.
The ranges for each of the directly optimised variables are
derived as the following based on Equation 11:

α1 ≤ x1 ≤ Q1 − α2 (13a)

α3 ≤ x4 ≤ Q2 − α4 (13b)

0 ≤ x2 ≤ S +Q1 − α1 (13c)

α5 ≤ x6 ≤ S +Q1 +Q2 − α1 − α3 − α6 (13d)

4.2 Constraint Handling
As mentioned in the previous section, there are a number

of constraints associated with the Watershed problem: the
equality constraint associated with x3 and x5 (Equation 10)
which represents the water available for the ecosystem and
the inequality constraints associated with the maximum and
minimum limits of each variable (Equation 11).

Satisfying the equality constraint of providing water to
the ecosystem is self constrained as the variables x3 and
x5 simply react to the environment, Equation 10. There
is no constraint handling method needed for this equality
constraint.

The inequality constraints associated with the minimum
possible values for the direct variables are handled by mak-

ing these the boundary of the problem. Since these are con-
stant values, αi, that remain unchanged regardless of the en-
vironment or other actions of other agents, these constraints
can be rigidly enforced.

The final constraints which must be handled, are those in
Equation 11. Although these constraints were used to define
the maximum possible range for each variable, for any given
solution these constraints can narrow the range of acceptable
values for these variables. This is because many of these
constraints are comprised of more than one variable xi or
that the variables being indirectly optimised. Therefore to
ensure that these constraints are enforced, the static penalty
method will be applied to any violations of Equation 11 [18].

This penalty function will be incorporated into the reward
that the agent receives or the fitness of a solution evaluated
by a particle. When the collective group of agents produce
a solution in which any of the constraints are violated, they
will all be collectively punished via their reward received.
Likewise when particles evaluate an infeasible solution, the
solution will have a poor fitness. The penalty function is
defined below:

fp =

N∑

i=1

C(|hi + 1|δi) (14)

Where N = 9 is the total number of constraints handled
using this method per flow scenario, C = 10E2 is the viola-
tion constant, hi is the violation amount of each constraint
and δ = 0 if there is no violation for a particular constraint
and δ = 1 if a constraint is violated. The violation constant
C = 10E2 was selected so that any solution which violates
a constraint will have a significant impact on the agents’
learning and particles’ searching. Lower C values were eval-
uated but caused each algorithm to converge on infeasible
solutions.

4.3 Problem Discretization
The Watershed problem consists of continuous variables,

i.e. the water withdrawn from the river is a positive real
number. In order to apply MARL to the Watershed prob-
lem, the action space will need to discretized. The possi-
ble actions taken by each agent will be a percentage of the
range of possible values which the variable can be, i.e. 0%
to 100% in increments of 0.01%, giving the agent 10001 pos-
sible actions per state. The increments were set to 0.01%
because this was the finest resolution that the MARL algo-
rithm could operate in a timely manner. Finer resolutions
where evaluated but did not give any significant gains in
performance. The set of actions which an agent may take
can be defined as:

A = {0, 0.01, ..., 99.99, 100} (15)

The possible states of the environment are defined in Table
2. These correspond to three different flow rates in the river.
An agent’s state action space and associated Q matrix will
both be a 3× 10001 matrix.

Each agent selects its action from A using the time de-
creasing ε-greedy strategy, where a random action is selected
with probability ε, and the highest valued action is selected
with probability 1− ε. The value of ε decreases by ε = 0.99ε
at each iteration. This will cause the agents to converge on
a solution.

87

Since the PSO algorithm is designed to optimise contin-
uous variables, the Watershed problem was not discretized
for PSO. Instead, the particles traverse the problem space
by iteratively updating their equations of motion (Equation
2).

4.4 Reward & Fitness Function
In order for the agents to learn how to optimally withdraw

water and for the particles to find the optimum solution,
a reward/fitness function must first be defined in order to
implement in the Q-Learning algorithm, Equation 1. Note:
The terms “reward function” and “fitness function” have the
same meaning for the purposes of this paper. They each
indicate how good a solution/system configuration is. This
indicator is given to the agents as a reward and is observed
by particles as the fitness of the solution.

The reward received by each agent will be a global reward,
i.e. the reward will be based on the overall performance of
the system based on the objective function in Equation 12
and the penalty function from Equation 14. These two equa-
tions are combined to give the following Reward/Fitness
function:

R =

6∑

i=1

fi(xi)−
N∑

j=1

C(|hj + 1|δj) (16)

Here, the agents aim to maximise their reward (R) and the
particles aim to find the solution with the maximum fitness
(R).

5. EXPERIMENTAL PROCEDURE
The agents total learning period and particle optimisa-

tion time is 1,000 episodes. The learning parameters for
all agents are as follows: g = 0.01, α = 0.05, γ = 0.75,
ε = 0.05. These values were selected following comprehen-
sive parameter sweeps to determine the best performing set-
tings. The PSO algorithm consisted of the following param-
eters: c1 = c2 = 2.05, χ = 0.7298, and a von Neumann
topology. Each were evaluated over 25 runs and compared
using the t-test to check for statistically significant differ-
ences in performance.

6. RESULTS
When evaluated over the 3 flow scenarios for 25 statistical

runs, MARL achieved an average fitness of 244.32± 129.54
while PSO achieved an average fitness of 562.29 ± 57.93.
These figures refer to the sum of the average fitness of the 3
flow scenarios and are rounded to two decimal places.

When compared using the t-test, the PSO algorithm out-
performed the MARL algorithm. These results are statisti-
cally significant. The convergence graphs presented in Fig-
ure 3, show the average convergence of each algorithm over
the 1,000 training episodes. The PSO algorithm gives a
faster rate of convergence.

Each algorithm was able to successfully converge on a so-
lution without any violations on every run. The violations
produced by each algorithm per training episode is presented
in Figure 4.

The final graph displays the best, worst and average con-
vergence of the MARL algorithm for the 25 runs, along with
the average PSO convergence. This graph reveals that in the

Figure 3: Average Convergence of MARL & PSO For 1,000
Training Episodes Over 25 Statistical Runs

Figure 4: Average Violations of MARL & PSO Over 25
Statistical Runs

best run for the MARL algorithm, the MARL algorithm con-
verges faster than the PSO algorithm and is only marginally
outperformed by the PSO algorithm. This can be seen in
Figure 5. This reveals a key piece of information. Despite
the granularity of the actions that the agents can take, the
MARL algorithm is capable of producing solutions compara-
ble to the PSO in terms of performance. The unreliability of
the MARL algorithm to find the optimum solution in large
action spaces such as this is the reason for its poor average
performance.

The computational cost of each algorithm as implemented
in this paper is roughly equivalent, with the MARL algo-
rithm taking marginally longer to run. This is due to the
large amount of possible actions for each agent to consider.

It is thought that the reason for the increased performance
of PSO compared to that of MARL is due to the continuous
nature of the possible actions. Various issues arise when
discretizing the range of actions for MARL. Using too coarse
of a granularity will restrict the optimal policy learned by the
agents. If too fine of a granularity is implemented, the action
space is too large for the agent to adequately search. A large
action space will also result in a higher computational cost.

When applying MARL to any problem, it is important

88

Figure 5: Best, Worst & Average Case Convergence of
MARL vs PSO

that the agents sufficiently explore the problem space. The
exploration of the agents is determined by the value of ε.
In all of the experiments conducted, ε = 0.05 initially and
decreased by ε = 0.99ε. A series of parameter sweeps were
carried out to establish these values. It is possible that these
parameters could be further refined with more parameter
tuning, however the parameter sweeps conducted to deter-
mine these values were comprehensive.

Another possible cause for the relatively poor performance
of MARL in comparison to PSO is the reward function given
to each agent. A global reward was given to each of the
agents when learning the optimum policy. This was im-
plemented for two reasons: 1) To discourage the agents to
act in a self interested manner. The reward function imple-
mented is calculated based on how well the entire system
is performing. Each agent will therefore have no incentive
to act in a manner that does not improve the utility of the
entire system. 2) The same function is implemented for the
particles in PSO as a means of assessing the fitness of a po-
tential solution. As stated in Section 4.4, the reward and
fitness function have the same meaning for the purposes of
this paper. They each describe the overall utility of a system
configuration (or solution).

There is a drawback with implementing this global re-
ward function. This refers back to the structural credit as-
signment outlined in Section 2.2. If one of the agents were
to make a poor decision while the rest of the agents were
to make good decisions, the rest of the agents will not re-
ceive as high a reward because of the actions of the one
poorly performing agent. A possible area of future work
that might counteract this would be to investigate if other
forms of reward shaping can improve performance, e.g., dif-
ference rewards.

7. CONCLUSION
A novel application area of MARL has been introduced in

the form of the Watershed management problem. The var-
ious issues surrounding the application of MARL to such a
problem have been highlighted, i.e. the granularity and con-
straints. The MARL algorithm is also compared to a heuris-
tic optimisation algorithm, the PSO. The results presented
in this paper reveal that the MARL algorithm has the po-

tential to perform on par with the PSO algorithm but suffers
from not consistently converging on the optimum solution.
Although ultimately the granularity of the possible actions
is a limiting factor, the results of this paper demonstrate
that the MARL algorithm can produce good solutions with
a granularity of 0.01%. What is needed is to increase the
consistency of the MARL approach for large action spaces.

The research conducted in this paper has demonstrated
the following:

1. Multi-agent Reinforcement Learning can be applied
to the Watershed and can produce solutions that are
comparable to heuristic optimisation algorithms that
are tailored for optimisation problems with continuous
variables.

2. The reason for the relatively poor average performance
of the MARL algorithm is that it fails to consistently
converge on the optimum solution.

There are a number of ways to improve the performance of
the MARL algorithm on the Watershed management prob-
lem in future work. One such way would be to implement
different reward functions to better inform each agent. An-
other avenue of future work would be to investigate other
techniques that have been proposed to apply Reinforcement
Learning to continuous action spaces.

REFERENCES
[1] S. Alam, G. Dobbie, Y. S. Koh, P. Riddle, and S. U.

Rehman. Research on particle swarm optimization
based clustering: a systematic review of literature and
techniques. Swarm and Evolutionary Computation,
17:1–13, 2014.

[2] F. Amigoni, A. Castelletti, and M. Giuliani. Modeling
the management of water resources systems using
multi-objective dcops. In Proceedings of the 2015
International Conference on Autonomous Agents and
Multiagent Systems, pages 821–829. International
Foundation for Autonomous Agents and Multiagent
Systems, 2015.

[3] A. L. C. Bazzan and F. Klugl. A review on
agent-based technology for traffic and transportation.
The Knowledge Engineering Review, 29:375–403, 6
2014.

[4] J. Boyan and A. W. Moore. Generalization in
reinforcement learning: Safely approximating the
value function. Advances in neural information
processing systems, pages 369–376, 1995.

[5] D. Bratton and J. Kennedy. Defining a standard for
particle swarm optimization. In Swarm Intelligence
Symposium, 2007. SIS 2007. IEEE, pages 120–127.
IEEE, 2007.

[6] I. Broderick and E. Howley. Particle swarm
optimisation with enhanced memory particles. In
Swarm Intelligence, pages 254–261. Springer, 2014.

[7] L. Busoniu, R. BabuÅ ↪aka, and B. Schutter.
Multi-agent reinforcement learning: An overview. In
D. Srinivasan and L. Jain, editors, Innovations in
Multi-Agent Systems and Applications - 1, volume 310
of Studies in Computational Intelligence, pages
183–221. Springer Berlin Heidelberg, 2010.

89

[8] M. Clerc and J. Kennedy. The particle swarm -
explosion, stability, and convergence in a
multidimensional complex space. Evolutionary
Computation, IEEE Transactions on, 6(1):58–73, Feb
2002.

[9] A. X. Jiang. Multiagent reinforcement learning in
stochastic games with continuous action spaces. 2004.

[10] J. Kennedy. Particle swarm optimization. In
Encyclopedia of Machine Learning, pages 760–766.
Springer, 2010.

[11] P. Mannion, J. Duggan, and E. Howley. An
experimental review of reinforcement learning
algorithms for adaptive traffic signal control. In
A. Kotsialos, F. Kluegl, L. McCluskey, J. P. Mueller,
O. Rana, and R. Schumann, editors, Autonomic Road
Transport Support Systems, Autonomic Systems.
Birkhauser/Springer, 2016 (in press).

[12] P. Mannion, K. Mason, S. Devlin, J. Duggan, and
E. Howley. Multi-objective dynamic dispatch
optimisation using multi-agent reinforcement learning.
In Proceedings of the 15th International Conference on
Autonomous Agents and Multiagent Systems
(AAMAS), May 2016 (in press).

[13] K. Mason and E. Howley. Avoidance strategies in
particle swarm optimisation. In R. Matousek, editor,
Mendel 2015, volume 378 of Advances in Intelligent
Systems and Computing, pages 3–15. Springer
International Publishing, 2015.

[14] K. Mason and E. Howley. Exploring avoidance
strategies & neighbourhood topologies in particle
swarm optimisation. International Journal of Swarm
Intelligence, 2016 (In Press). Special Issue on
Advances in Evolutionary Computation, Fuzzy Logic
and Swarm Intelligence.

[15] M. L. Puterman. Markov Decision Processes: Discrete
Stochastic Dynamic Programming. John Wiley &
Sons, Inc., New York, NY, USA, 1st edition, 1994.

[16] J. C. Santamaŕıa, R. S. Sutton, and A. Ram.
Experiments with reinforcement learning in problems
with continuous state and action spaces. Adaptive
behavior, 6(2):163–217, 1997.

[17] Y. Shoham, R. Powers, and T. Grenager. If
multi-agent learning is the answer, what is the
question? Artificial Intelligence, 171(7):365–377, 2007.

[18] A. E. Smith, D. W. Coit, T. Baeck, D. Fogel, and
Z. Michalewicz. Penalty functions. Evolutionary
computation, 2:41–48, 2000.

[19] K. Tumer and A. Agogino. Distributed agent-based air
traffic flow management. In Proceedings of the Sixth
International Joint Conference on Autonomous Agents
and Multiagent Systems, pages 330–337, Honolulu, HI,
May 2007.

[20] C. J. Watkins and P. Dayan. Technical note:
Q-learning. Machine Learning, 8(3-4):279–292, 1992.

[21] C. J. C. H. Watkins. Learning from Delayed Rewards.
PhD thesis, King’s College, Cambridge, UK, 1989.

[22] M. Wiering and M. van Otterlo, editors.
Reinforcement Learning: State-of-the-Art. Springer,
2012.

[23] D. H. Wolpert and K. Tumer. Collective intelligence,
data routing and braess’ paradox. Journal of Artificial
Intelligence Research, pages 359–387, 2002.

[24] M. Wooldridge. Introduction to Multiagent Systems.
John Wiley & Sons, Inc., New York, NY, USA, 2001.

[25] Y.-C. E. Yang, X. Cai, and D. M. Stipanović. A
decentralized optimization algorithm for multiagent
system–based watershed management. Water
Resources Research, 45(8), 2009.

90

Feature Selection as a Multiagent Coordination Problem

Kleanthis Malialis
Dept. of Computer Science

University College London, UK
k.malialis@ucl.ac.uk

Jun Wang
Dept. of Computer Science

University College London, UK
j.wang@ucl.ac.uk

Gary Brooks
Massive Analytic

London, UK
gary.brooks@

massiveanalytic.com

George Frangou
Massive Analytic

London, UK
george.frangou@

massiveanalytic.com

ABSTRACT
Datasets with hundreds to tens of thousands features is the
new norm. Feature selection constitutes a central problem
in machine learning, where the aim is to derive a represen-
tative set of features from which to construct a classification
(or prediction) model for a specific task. Our experimental
study involves microarray gene expression datasets; these
are high-dimensional and noisy datasets that contain ge-
netic data typically used for distinguishing between benign
or malicious tissues or classifying different types of cancer.
In this paper, we formulate feature selection as a multia-
gent coordination problem and propose a novel feature selec-
tion method using multiagent reinforcement learning. The
central idea of the proposed approach is to “assign” a rein-
forcement learning agent to each feature where each agent
learns to control a single feature; we refer to this approach
as MARL. Applying this to microarray datasets creates an
enormous multiagent coordination problem between thou-
sands of learning agents. To address the scalability challenge
we apply a form of reward shaping called CLEAN rewards.
We compare in total nine feature selection methods, includ-
ing state-of-the-art methods, and show that the proposed
method using CLEAN rewards can significantly scale-up,
thus outperforming the rest of learning-based methods. We
further show that a hybrid variant of MARL achieves the
best overall performance.

CCS Concepts
•Computing methodologies→Multi-agent reinforce-
ment learning; Feature selection;

Keywords
Feature selection, wrapper methods, reinforcement learning,
microarray gene expression

1. INTRODUCTION
Datasets nowadays are becoming increasingly rich with

hundreds to tens of thousands of features available. This
explosion of information, however, contains features that are
irrelevant (i.e. have little predictive or classification power),
noisy and redundant. A central problem in machine learning
is to derive a representative subset of these features from
which to construct a classification (or prediction) model for
a specific task [10].

Feature selection offers many potential benefits [9]. It can
significantly boost classification performance (or prediction
accuracy), create human-understandable results and provide
insight to the data by returning only the top classifiers for
a particular task. It can further facilitate data visualisa-
tion, reduce storage requirements and execution runtime of
machine learning algorithms.

There are three types of feature selection methods. Fil-
ters [9] use variable ranking techniques that rely on sta-
tistical measures to select top-ranked features. Filtering is
performed as a pre-processing step i.e. independent of the
classification algorithm. Wrappers [4] do take into consider-
ation the algorithm’s performance as the objective function
in order to evaluate feature subsets. This is known to be
NP-hard as enumeration of all possible feature subsets is
intractable. A hybrid filter-wrapper approach combines the
advantages of both worlds. Alternatively, in embedded [9, 4]
approaches, the feature selection process is built-in or “em-
bedded” in the classifier directly.

Our experimental study involves microarray gene expres-
sion datasets. Microarray datasets are high-dimensional (thou-
sands of features) datasets that contain genetic data typi-
cally used for distinguishing between benign or malicious
tissues or classifying different types of cancer. The contri-
butions made by this work are the following.

We formulate feature selection as a multiagent coordina-
tion problem and propose a novel wrapper feature selection
method using multiagent reinforcement learning. The cen-
tral idea of the proposed approach is to “assign” a learning
agent to each feature. Each agent controls a single feature
and learns whether it will be included in or excluded from
the final feature subset; we refer to this approach as MARL.

Applying this to microarray datasets creates a large mul-
tiagent coordination problem between thousands of learn-
ing agents. To address the scalability challenge we apply
CLEAN rewards [11, 6], a form of reward shaping, that re-
moves the exploratory noise caused by other learning agents
and has been shown to achieve excellent empirical results in
a variety of domains.

We compare in total nine feature selection methods in-
cluding state-of-the-art methods. Specifically, a baseline,
two filter, three wrapper and three hybrid methods were
included in our comparison. We show that the proposed
CLEAN method significantly outperforms the wrapper meth-
ods, which severely suffer from scalability issues. The CLEAN

91

method is the only wrapper that, out of thousands of fea-
tures, can learn a feature subset whose size is below a desired
boundary. Furthermore, as expected, the proposed wrapper
MARL method suffers from scalability issues, however, it is
demonstrated that a hybrid variant of MARL achieves the
best overall performance.

The organisation of the paper is as follows. Section 2
describes the background material necessary to understand
the contributions made by this work. Section 3 presents the
work that is related to ours. Section 4 introduces and de-
scribes in detail our proposed approach. Learning and eval-
uation results are discussed in Section 6 and 7 respectively.
A conclusion is presented in Section 8.

2. PRELIMINARIES

2.1 Reinforcement Learning
Reinforcement learning is a paradigm in which an active

decision-making agent interacts with its environment and
learns from reinforcement, that is, a numeric feedback in
the form of reward or punishment [18]. The feedback re-
ceived is used to improve the agent’s actions. The concept
of an iterative approach constitutes the backbone of the ma-
jority of reinforcement learning algorithms. In this work we
are interested in stateless tasks, where reinforcement learn-
ing is used by the agents to estimate, based on previous
experience, the expected reward associated with individual
or joint actions.

A popular reinforcement learning algorithm is Q-learning
[19]. In the stateless setting, the Q-value Q(a) provides
the estimated expected reward of performing (individual or
joint) action a. An agent updates its estimate Q(a) using:

Q(a)← Q(a) + α[r −Q(a)] (1)

where a is the action taken resulting in reward r, and α ∈
[0, 1] is the rate of learning.

Applications of multiagent reinforcement learning typi-
cally take one of two approaches; multiple individual learn-
ers (ILs) or joint action learners (JALs) [5]. Multiple ILs
assume any other agents to be part of the environment and
so, as the others simultaneously learn, the environment ap-
pears to be dynamic as the probability of transition when
taking action a in state s changes over time. To overcome
the appearance of a dynamic environment, JALs were devel-
oped that extend their value function to consider for each
state the value of each possible combination of actions by
all agents. The consideration of the joint action causes an
exponential increase in the number of values that must be
calculated with each additional agent added to the system.
Therefore, as we are interested in scalability, this work fo-
cuses on multiple ILs and not JALs.

The exploration-exploitation trade-off constitutes a crit-
ical issue in the design of a reinforcement learning agent.
It aims to offer a balance between the exploitation of the
agent’s knowledge and the exploration through which the
agent’s knowledge is enriched. A common method of doing
so is ε-greedy [18], where the agent behaves greedily most of
the time, but with a probability ε it selects an action ran-
domly. To get the best of both exploration and exploitation,
it is advised to reduce ε over time [18].

The typical approach in MARL is to provide agents with a
global reward. This reward is in fact the system performance
used as a learning signal, thus allowing each agent to act in

the system’s interest. The global reward, however, includes
a substantial amount of noise due to exploratory actions [11].
This is caused by the fact that learning agents are unable to
distinguish what parts of the global reward signal are caused
by true environmental dynamics, and what parts are caused
by exploratory action noise caused by other agents. CLEAN
rewards [11, 6] were designed to remove exploratory action
noise and are described in the next section.

2.2 CLEAN Rewards
CLEAN rewards [11, 6] were introduced to remove ex-

ploratory noise present in the global reward. This is achieved
because the exploration for each agent is performed offline
i.e. privately. Specifically, at each learning episode, each
agent executes an action by following its greedy policy (i.e.
without exploration); then all the agents receive a global re-
ward. Each agent then privately computes the global reward
it would have received had it executed an exploratory action,
while the rest of the agents followed their greedy policies.

CLEAN rewards were defined as follows [11]:

Ci = G(a− ai + ci)−G(a) (2)

where a is the joint action executed when all agents followed
their greedy policies, ai is the greedy action executed by
agent i, ci is the counterfactual (offline) action taken by
agent i following ε-greedy, G(a) is the global reward received
when all agents executed their greedy policies and G(a −
ai + ci) is the counterfactual (offline) reward agent i would
have received, had it executed the counterfactual action ci,
instead of action ai, while the rest of the agents followed
their greedy policies. Each agent then uses the following
formula to update its Q-values:

Q(ci)← Q(ci) + α[Ci −Q(ci)] (3)

In this manner, CLEAN rewards remove the exploratory
noise caused by other agents and allow each agent to effec-
tively determine which actions are beneficial or not. CLEAN
rewards have achieved superior empirical results in a variety
of domains such as in UAV communication networks [11].

2.3 Feature Selection
Feature selection is defined as the problem of discarding

information that is irrelevant (i.e. have little predictive or
classification power), noisy and redundant, thus considering
only a subset of the features. In other words, the goal of fea-
ture selection is to identify the best classifiers (or predictors)
for a particular classification (or prediction) task.

Formally [13], let X be the fixed f -dimensional input
space, where f is the number of features. Let T be the
m × f -dimensional space (subspace of X) that represents
the training set T = {xi, yi}mi=1, where m is the number
of training examples. Each example in T consists of a f -
dimensional input vector xi = [xi1, x

i
2, ..., x

i
f] drawn i.i.d.

from some fixed distribution DX over X, and an output class
label yi. We denote by C the m-dimensional vector of the
class labels C = [y1, y2, ..., ym]. Without any loss of general-
ity, in this work we focus on binary classification problems,
and assume a fixed binary concept g : X 7−→ {0, 1} such
that yi = g(xi) ∈ {0, 1}.

Note that g uses all f features, but it is hoped that it
can be approximated well (in terms of the generalisation
error) by a hypothesis function that depends only on a small
subset of the f features. Let F be the set of all f features

92

F = {F1, F2, ..., Ff}, and S ⊆ F be a subset of it. We
denote by xi|S the input vector with all the features not in
S eliminated, and similarly, let X|S be the input space with
all the features not in S eliminated.

The aim of feature selection is to find a feature subset S,
such that a hypothesis h : X|S 7−→ {0, 1} which is defined
only in the subspace of features X|S , can be extended to X.
For any hypothesis h the generalisation error is defined as
ε(h) = Prx∈DX [h(x) 6= g(x)] and the empirical error on the
training set T is ε̂(h) = 1

|T | |{(x, y) ∈ T |h(x) 6= y}|.

3. RELATED WORK
Traditionally, there are three categories of feature selec-

tion algorithms. Filters [9] use variable ranking techniques
that rely on statistical measures (such as Pearson’s correla-
tion coefficient and mutual information) to select top-ranked
features. It is important to note that filtering is performed
as a data pre-processing step i.e. independent of the choice
of the classification algorithm. Filters have been demon-
strated to perform well in many cases [4] and they are also
computationally cost-effective and fast [4].

Let T |F and C be the training set with the class labels
vector. When each feature Fi ∈ F is considered individually
we refer to it as a univariate filter. An example of this is
the univariate correlation-based feature selection (uCFS) [9]
where the Pearson’s correlation between each feature space
T |Fi∈F and the target class C is taken. Based on the square
of this score the top-ranked features are selected; the square
is considered so negatively correlated features are included.

When a subset of features is considered we refer to it as a
multivariate filter. A popular example of this is the minimal-
redundancy maximal-relevance (mRMR) method [15]. mRMR
searches for a subset S ⊆ F that maximises relevance by
maximising the mutual information between each individ-
ual feature space T |Fi∈S and the class C, and at the same
time minimises redundancy by minimising the mutual infor-
mation between any two feature spaces T |Fi∈S and T |Fj∈S
(i 6= j) within the subset. Another example of this category
is the multivariate CFS [10].

Wrappers [4] consider the classification algorithm’s per-
formance (e.g. accuracy) as the objective function in order
to evaluate feature subsets. This is known to be NP-hard as
enumeration of all 2f possible feature subsets is intractable;
for this reason heuristic search algorithms are employed.
Wrappers typically outperform filters because they take into
account the feedback from the classifier, at the expense of
being computationally intensive and slow. Examples include
hill climbing algorithms [10] such as forward selection and
backward elimination, best-first search [10], sequential float-
ing forward selection [4], Monte Carlo tree search [7], neural
networks [12] and genetic algorithms [8, 4, 17].

A hybrid filter-wrapper approach, where a filter is first
used to bring down the number of features and then a wrap-
per is applied, combines the advantages of both worlds. Al-
ternatively, in embedded [9, 4] approaches, the feature se-
lection process is built-in or “embedded” in the classifier di-
rectly; popular examples are decision trees [3] and regular-
ization methods [14].

4. MARL WRAPPER
In this paper we formulate feature selection as a multia-

gent coordination problem and propose a novel wrapper fea-

Algorithm 1 Feature Selection

1: function kFoldCV FS(D,L, λ, k, b)
Input parameters:
D: dataset, L: classification algorithm
λ: split percentage, k number of folds
b: upper boundary for feature subset’s size

2: randomly split D into the training T ((1− λ)%) and
evaluation E (λ%) sets

3: randomly split T into k disjoint folds {T1, ..., Tk} of
m/k training examples each

4: get feature subset S = FS MARL({T1, ..., Tk}) .
Feature selection (Algorithm 2)

5: learn hypothesis h = L(T |S) . Training
6: get performance P of h on E|S . Evaluation on

unseen dataset
7: return S, P
8: end function

ture selection method using multiagent reinforcement learn-
ing. The central idea of the proposed approach is to “assign”
a learning agent to each feature. Thus, the total number of
learning agents is equal to the number of features.

The purpose of feature selection is to discard irrelevant,
noisy and redundant features, by only proposing a subset of
the features. Each reinforcement learning agent is therefore
allowed to control a single feature; in other words, to decide
whether a feature will be included in or excluded from the
final feature subset.

Each agent has two actions; these are, “0” and “1”. Action
“0” represents a feature that is “disabled” or “off” i.e. it is
not included in the final feature subset. Analogously, action
“1” represents a feature that is “enabled” or “on” i.e. it is
included in the feature subset. Therefore, a joint action is
a bitstring (i.e. a sequence of “0”s and “1”s) and in order to
get the feature subset we need to extract only the “1”s.

Let us now describe the reward function used. Note that
feature selection constitutes a multi-objective problem i.e.
reducing the size of feature subset |S| and at the same time
increasing classification’s performance P (e.g. accuracy or
F-score; performance metrics are discussed in Section 5.3).
It should be emphasised that these two goals can be con-
flicting since reducing the number of features, valuable in-
formation can be lost.

Given a feature subset S, an upper boundary b for the
subset’s size and its corresponding classification performance
P , we propose the reward function shown in Equation 4:

r =

{
P if |S| ≤ b
P/cost if |S| > b

(4)

where cost denotes the penalty for violating the upper bound-
ary and defined as cost = |S|/b.

Since wrapper feature selection methods take into account
the classification performance, we also describe in this sec-
tion the “k-fold cross-validation” evaluation method we have
used. Alternatives methods can be used, however, this is
widely regarded as the standard one [20]. This method splits
the training set into k disjoint and stratified subsets, each
of size m/k (where m is the number of training examples).
Stratification is applied to ensure the same portion of pos-
itive examples is found in each split. Then, k − 1 folds are
used for training while the remaining fold is considered as

93

Algorithm 2 MARL Wrapper

1: function FS MARL({T1, ..., Tk})
Input parameters:
{T1, ..., Tk}: training set’s folds

2: initialise Q-values: ∀a|Q(a) = −1
3: for episode = 1 : num episodes do
4: for agent = 1 : num agents do
5: if flag CLEAN == 1 then
6: execute greedy (online) action ai ∈ {0, 1}
7: else
8: execute ε-greedy action ai ∈ {0, 1}
9: end if

10: end for
11: observe joint action a
12: get subset S by considering only “on” actions
13: get global rewardG(a) = Reward(S, {T1, ..., Tk})

. Algorithm 3
14: for agent = 1 : num agents do
15: if flag CLEAN == 1 then
16: take ε-greedy (offline) action ci ∈ {0, 1}
17: Calculate Ci = G(a− ai + ci)−G(a)
18: Update Q(ci)← Q(ci) + α[Ci −Q(ci)]
19: else
20: Update Q(ai)← Q(ai) + α[G(a)−Q(ai)]
21: end if
22: end for
23: reduce α using α decay rate
24: reduce ε using ε decay rate
25: end for
26: return S
27: end function

the validation (also known as the cross-validation) set. This
is repeated k times so all folds are eventually considered as
validation sets. Ideally, the learning process will come up
with the feature subset that has the best average perfor-
mance on all validation sets. The learnt feature subset will
then be evaluated on the unseen test set.

In this novel formulation of feature selection the total
number of learning agents is equal to the number of features.
Rich datasets nowadays can include thousands of features.
Therefore, this constitutes an enormous multiagent coordi-
nation problem and the scalability of the proposed approach
is of vital importance. We refer to our approach that uses
the global reward as MARL. To address the scalability chal-
lenge, we propose the use of CLEAN rewards as described
in Section 2.2.

What has been described thus far is presented by Algo-
rithms 1-3 in a top-down fashion. The feature selection pro-
cess is initiated in Algorithm 1. This algorithm calls the
MARL wrapper method (Algorithm 2) which in turn makes
use of the reward function in Algorithm 3.

5. EXPERIMENTAL SETUP

5.1 Datasets
For our experimental study we make use of three public

microarray gene expression datasets. Microarray datasets
contain a rich source of genetic data typically used for dis-
tinguishing between benign or malicious tissues or classify-
ing different types of cancer. Microarray datasets are noisy,

Algorithm 3 Reward Function

1: function Reward(S, {T1, ..., Tk})
2: Input parameters:
3: - S: feature subset
4: - {T1, ..., Tk}: training set’s folds
5: for j=1:k do
6: let the training set be T = T1

⋃
Tj−1

⋃
Tj+1

⋃
Tk

and validation set be V = Tj
7: learn hypothesis h = L(T |S)
8: get performance of h on V |S
9: end for

10: Let P be the average performance
11: if |S| ≤ b then
12: r = P
13: else
14: let cost = |S|/b
15: r = P/cost
16: end if
17: return r
18: end function

high-dimensional and constitute the ideal testbed for fea-
ture selection. The datasets used are for colon cancer [1],
prostate cancer [8] and leukemia [8]; more information is
shown in Table 1.

We follow some typical data pre-processing steps prior
applying any of the feature selection and classification al-
gorithms. Since the range of numerical features can vary
significantly, we apply mean normalisation to standardise
these ranges. Specifically, for any feature Fj let its feature
space be X|Fj . Let the mean and standard deviation of
X|Fj to be denoted by µ and σ. Then each feature value in

{xij}mi=1 is normalised to xij =
xij−µ
σ

.
In addition, the mRMR feature selection method (de-

scribed in Section 3) requires that numerical values are dis-
cretised. As suggested by [15], we use binning (3 bins) for
data discretisation. Binning works as follows; the original
feature values that fall in a given interval (i.e. a “bin”), are
replaced by a value representative of that interval.

5.2 Compared Methods
We compare a total of nine feature selection methods.

Filter methods used are the univariate CFS (uCFS) and
mRMR. Wrapper methods include genetic algorithms (GA)
and the two proposed methods MARL and CLEAN. A de-
scription of uCFS, mRMR and GA was given in Section 3.
The proposed MARL and CLEAN were described in Sec-
tion 4. We further include in our comparison three hybrid
methods, specifically, a combination of the wrappers GA,
MARL and CLEAN with the filter uCFS. The last method
is a baseline method where no feature selection is performed.
We note that for the leukemia dataset, we first apply the
uCFS filter as a pre-processing step to bring down the num-
ber of features to 2000.

Each method is run three times where the value of the
upper boundary for the feature subset is b = {10, 30, 50}.
The chosen values are based on studies which have showed
that the approximate number of features to be selected in
microarray datasets in order to obtain only genetic informa-
tion with significant informative value is 30 [8].

Lastly, after performing parameter tuning we set the pa-

94

Dataset Name #Features #Examples #Positive Examples

Colon Cancer 2000 62 40 (64.5%)
Prostate Cancer 2135 102 52 (51.0%)

Leukemia 7129 72 25 (34.7%)

Table 1: Datasets used in our study

rameter values for MARL and CLEAN as follows: α = 0.2,
ε = 0.15, α decay rate = 0.9995, ε decay rate = 0.9995.
Also, the number of episodes for MARL is num episodes =
5000, while for CLEAN is num episodes = 3000.

The parameter values for GA are population size = 50,
num generations = 100, tournament size = 3, two-point
crossover with prob crossover = 0.7, prob mutation = 1.0
and mutation rate = 1/f where f is the original number
of features. The fitness function is the same as the reward
function given in Equation 4.

5.3 Evaluation Method and Metrics
As discussed in Section 4, the evaluation method used

is the “stratified k-fold cross-validation” [20]. We have set
the split percentage for the final test set to λ = 0.2 and
number of folds to k = 10. To ensure fairness, this process
is repeated over ten times to obtain different splits.

The classification algorithm L we have used is k-Nearest
Neighbours [20]. Four popular evaluation metrics are used
for classification tasks; these are, accuracy, precision, recall
and F-score (also known as F1-score) [16]. Accuracy is the
overall performance of the classification algorithm, precision
is the ratio of true positives over the predicted positives,
recall is the ratio of true positives over the actual positives
and F-score is a trade-off between precision and recall.

Let TP and TN be the number of true positives and true
negatives respectively, and let FP and FN be the number
of false positives and false negatives respectively. The four
metrics are defined as follows:

Accuracy =
TP + TN

TP + FP + TN + FN
(5)

Precision(P) =
TP

TP + FP
(6)

Recall(R) =
TP

TP + FN
(7)

F − score =
2× P ×R
P +R

(8)

For the final evaluation (Algorithm 1/Line 6) we consider
the values for all performance metrics. During learning the
metric to be optimised is F-score (Algorithm 3/Line 10).
Other metrics could have been used for learning, but our
choice was based on the following fact. When accuracy was
considered as the metric to be optimised, it resulted in poor
results for F-score (and Precision and Recall). However,
when F-score is optimised, it also results in good results for
accuracy (although sometimes not as good as if accuracy
was optimised directly). Therefore, since we are interested
in obtaining a good all-round performance, F-score is used.

5.4 Summary
To sum up, three high-dimensional datasets (colon cancer,

prostate cancer and leukemia) were considered, a baseline
(without feature selection) and eight (uCFS, mRMR, GA,

GA+uCFS, MARL, MARL+uCFS, CLEAN and
CLEAN+uCFS) feature selection methods were compared,
and each of these eight methods was run three times (with
b = {10, 30, 50}). In total 75 experiments were conducted,
and as mentioned, each was repeated over ten times. The
experimental results are presented in the next sections.

6. LEARNING RESULTS
We present here the learning results for the three wrap-

per methods MARL, CLEAN and GA. Recall from Algo-
rithm 3/Line 12 that the global reward corresponds to the
average performance on the validation folds. However, if the
subset size exceeds the desired boundary, a punishment is
provided (Algorithm 3/Line 14).

We plot the global reward at each episode and values are
averaged over ten repetitions. Due to space restrictions,
Figure 1 depicts the results for the MARL and CLEAN
(b = {10, 30, 50}) and GA (b = 50) methods in the prostate
cancer case; similar plots are obtained for the other datasets.

The first thing to notice is that the MARL and GA ap-
proaches behave similarly and extremely poorly. The reason
behind the poor performance is because MARL and GA fail
to scale-up as they always learn a feature subset of size sig-
nificantly above the desired boundary b, and therefore big
punishments occur. This will indeed be verified by the eval-
uation results on the unseen test set in the next section.

The superiority of the proposed CLEAN approach against
the other wrapper methods is clearly apparent by the exper-
imental outcome. The CLEAN approach can significantly
scale-up to datasets of thousands of features. It is observed
that as the boundary b increases it takes more time to learn
the desired feature subset, however, it always obtains an ex-
cellent performance and the learnt feature subset’s size is
always below or equal to b.

7. EVALUATION RESULTS
We consider the feature subset learnt during the learning

process and present the results on the unseen test set. Ta-
bles 2 - 4 show the results for colon cancer (b = 50), prostate
cancer (b = 30) and leukemia (b = 10) respectively; due to
space restrictions the remaining six tables are not included.
The figures are averaged over ten runs and the standard de-
viation is shown in the brackets. In the following sections,
we will discuss in detail the results for each different objec-
tive (number of features and performance), but let us first
describe the method used for analysing our results.

We have used the score-based analysis from [2, 17] to com-
pare the different methods. The analysis works as follows.
Consider, for instance, the column “#Features” in Table 4.
We give a score of 1 to the lowest (CLEAN+uCFS) method,
the second lowest (GA+uCFS) receives 2 points, and so on.
Therefore, the larger the number of features the higher the
score; in this case, the lower the score the better.

95

(a) MARL & CLEAN, b = 10 (b) MARL & CLEAN, b = 30

(c) MARL & CLEAN, b = 50 (d) GA, b = 50

Figure 1: Learning results (prostate cancer)

For the performance objective there are a couple of mi-
nor differences. Firstly, according to [2], the performance
measures should be statistically unrelated as much as pos-
sible. For this reason, we only consider accuracy, precision
and recall but not the F-score. Secondly, the higher the
performance the higher the score; therefore, in this case, the
higher the score the better. The total scores and correspond-
ing ranks for each objective are provided in Table 5.

7.1 Number of Features
Consider, for example, the Table 4. The first thing to

notice is the huge feature subset size (about 800) for GA and
MARL. It does of course constitute a significant reduction
over the original size, but this is about 80 times above the
requested subset size of b = 10. This is in alignment with
the learning results in Section 6. The wrapper methods GA
and MARL severely suffer from scalability issues.

The CLEAN method is the only wrapper that always
keeps the subset size below the boundary b. The hybrid
methods, as expected, reduce the subset size even further
since they merge the benefits of both worlds. In Table 5,
the proposed CLEAN+uCFS, MARL+uCFS and CLEAN
methods are ranked first, third and fourth respectively.

7.2 Performance
Consider, for example, the Table 3. The first thing to

notice is how important feature selection is. The baseline
approach with 2135 features has a larger amount of available
information, but its performance is extremely poor. This is
observed in all tables as summarised by Table 5 where the
baseline method is ranked last.

A similar behaviour is observed for the GA and MARL
wrappers. Although they use a significantly larger amount
of information (subset size of about 800) their ranking is
7th and 8th respectively, while their hybrid variants have
the best overall performance. The proposed MARL+uCFS
is ranked first, while GA+uCFS is ranked second. The filters
follow in the 3rd and 4th positions. As expected, the uni-
variate filter (uCFS) performs worse than the multivariate
filter (mRMR).

The proposed CLEAN method outperforms the baseline
and the other wrapper (GA,MARL) methods. However,
CLEAN and its hybrid variant only rank 5th and 6th overall.
This is a surprising outcome based on the learning results
from Figure 1 where the CLEAN method always obtains a
global reward of over 0.9. We believe this result occurs be-
cause of over-fitting to the validation sets, despite the fact
that the stratified 10-fold cross-validation method was used.

96

FS Method #Features Accuracy Precision Recall F-score

Without FS 2000.0 (0.0) 71.5 (7.3) 73.0 (6.1) 87.5 (13.2) 78.9 (6.0)

uCFS 50.0 (0.0) 76.9 (6.3) 80.2 (6.1) 83.8 (8.4) 81.6 (5.1)
mRMR 50.0 (0.0) 78.5 (7.9) 82.1 (6.5) 83.8 (10.3) 82.6 (6.8)

GA 770.5 (23.9) 72.3 (11.6) 74.0 (9.6) 87.5 (13.2) 79.5 (8.5)
MARL 796.5 (83.4) 71.5 (6.3) 73.6 (6.8) 86.3 (12.4) 78.7 (5.2)
CLEAN 43.3 (2.9) 72.3 (13.2) 74.2 (12.0) 87.5 (10.2) 79.8 (9.2)

GA + uCFS 23.9 (2.5) 76.9 (6.3) 79.4 (5.6) 85.0 (9.9) 81.8 (5.3)
MARL + uCFS 24.4 (4.4) 80.0 (6.5) 82.4 (5.2) 86.3 (9.2) 84.0 (5.5)
CLEAN + uCFS 9.7 (3.7) 76.2 (6.7) 79.4 (6.8) 83.8 (8.4) 81.2 (5.1)

Table 2: Evaluation results for colon cancer (b = 50)

FS Method #Features Accuracy Precision Recall F-score

Without FS 2135.0 (0.0) 74.3 (6.8) 80.9 (10.0) 69.1 (13.7) 73.3 (8.0)

uCFS 30.0 (0.0) 87.6 (8.5) 92.2 (7.0) 83.6 (14.7) 87.1 (9.8)
mRMR 30.0 (0.0) 87.6 (6.4) 92.1 (7.6) 84.5 (12.9) 87.4 (7.0)

GA 838.7 (15.3) 78.6 (7.2) 84.7 (11.3) 74.5 (11.2) 78.4 (7.2)
MARL 886.5 (69.6) 78.6 (5.6) 82.7 (7.6) 76.4 (11.5) 78.6 (6.3)
CLEAN 28.5 (0.7) 84.8 (5.9) 85.3 (5.5) 86.4 (11.5) 85.3 (6.4)

GA + uCFS 12.8 (2.9) 89.0 (7.8) 91.1 (8.0) 88.2 (11.4) 89.2 (8.1)
MARL + uCFS 16.1 (3.9) 88.6 (8.2) 92.2 (8.4) 86.4 (13.0) 88.5 (8.5)
CLEAN + uCFS 7.8 (2.3) 86.7 (6.3) 90.0 (6.6) 84.5 (12.2) 86.6 (7.0)

Table 3: Evaluation results for prostate cancer (b = 30)

FS Method #Features Accuracy Precision Recall F-score

Without FS 7129.0 (0.0) 84.0 (5.6) 94.2 (12.5) 56.0 (12.6) 69.5 (11.6)

uCFS 10.0 (0.0) 88.0 (8.2) 86.3 (12.1) 76.0 (18.4) 80.1 (13.9)
mRMR 10.0 (0.0) 90.0 (8.5) 85.2 (10.7) 84.0 (18.4) 84.2 (14.1)

GA 806.5 (30.0) 90.7 (7.2) 95.5 (9.6) 76.0 (18.4) 83.4 (13.8)
MARL 770.9 (78.3) 93.3 (7.0) 100.0 (0.0) 80.0 (21.1) 87.4 (14.4)
CLEAN 9.3 (0.5) 84.0 (5.6) 75.5 (11.8) 82.0 (11.4) 77.6 (6.6)

GA + uCFS 5.1 (1.8) 88.7 (8.3) 87.8 (14.2) 78.0 (17.5) 81.6 (13.3)
MARL + uCFS 5.7 (1.3) 86.7 (8.9) 85.3 (14.1) 74.0 (21.2) 77.6 (15.5)
CLEAN + uCFS 3.9 (0.9) 85.3 (6.9) 82.1 (13.7) 74.0 (16.5) 76.7 (11.1)

Table 4: Evaluation results for leukemia (b = 10)

FS Method #Features Score Performance Score

Without FS 81 (9th) 71 (9th)

uCFS 45 (5th) 157 (4th)
mRMR 45 (5th) 160 (3rd)

GA 66 (7th) 110 (7th)
MARL 69 (8th) 107 (8th)
CLEAN 36 (4th) 113 (6th)

GA + uCFS 19 (2nd) 164 (2nd)
MARL + uCFS 26 (3rd) 169 (1st)
CLEAN + uCFS 9 (1st) 133 (5th)

Table 5: Overall evaluation scores and rankings

97

We believe over-fitting is attributed to the fact that the num-
ber of examples in our datasets is very limited (Table 1). We
plan in the future to investigate datasets with a larger num-
ber of examples.

8. CONCLUSION
We have formulated feature selection as a multiagent co-

ordination problem and proposed a novel wrapper method
using multiagent reinforcement learning. The central idea of
the proposed approach is to “assign” a reinforcement learn-
ing agent to each feature. Each agent controls a single fea-
ture and learns whether it will be included in or excluded
from the final feature subset; we referred to this approach
as MARL. Furthermore, we have proposed the incorporation
of CLEAN rewards, a form of reward shaping, that removes
the exploratory noise created by other learning agents and
has been shown to significantly scale-up.

Our experimental setup involved the use of three noisy and
high-dimensional (thousands of features) microarray datasets,
namely, colon cancer, prostate cancer and leukemia. CLEAN
is the only wrapper that can learn a feature subset with a
size below the desired boundary; GA and MARL severely
suffer from scalability issues. In addition, CLEAN outper-
forms the baseline, GA and MARL methods despite the fact
that these three methods take into consideration more fea-
tures and therefore more information is available to them.

Due to over-fitting, CLEAN is outperformed by the filter
methods. It is believed that occurred because of the limited
number of examples in the microarray datasets. We plan
in the future to investigate a variety of datasets. Furthe-
more, despite the fact that MARL is inferior to CLEAN,
its hybrid variant (MARL+uCFS) achieves the best overall
performance. Future work will further investigate stream-
ing data where we believe the true power of reinforcement
learning will be revealed.

Acknowledgements
We would like to thank Mitchell Colby and Sepideh Kharaghani
for help on CLEAN rewards. We would also like to thank
Tamas Jambor, Charlie Evans and Vigginesh Srinivasan for
the fruitful discussions we have had.

REFERENCES
[1] U. Alon, N. Barkai, D. A. Notterman, K. Gish,

S. Ybarra, D. Mack, and A. J. Levine. Broad patterns
of gene expression revealed by clustering analysis of
tumor and normal colon tissues probed by
oligonucleotide arrays. Proceedings of the National
Academy of Sciences, 96(12):6745–6750, 1999.

[2] V. B. Bajić. Comparing the success of different
prediction software in sequence analysis: a review.
Briefings in Bioinformatics, 1(3):214–228, 2000.

[3] L. Breiman, J. Friedman, R. Olshen, and C. Stone.
Classification and Regression Trees. Wadsworth and
Brooks, 1984.

[4] G. Chandrashekar and F. Sahin. A survey on feature
selection methods. Computers & Electrical
Engineering, 40(1):16–28, 2014.

[5] C. Claus and C. Boutilier. The dynamics of
reinforcement learning in cooperative multiagent

systems. In Proceedings of the AAAI Conference on
Artificial Intelligence, 1998.

[6] M. K. Colby, S. Kharaghani, C. HolmesParker, and
K. Tumer. Counterfactual exploration for improving
multiagent learning. In Proceedings of the 2015
International Conference on Autonomous Agents and
Multiagent Systems, pages 171–179, 2015.

[7] R. Gaudel and M. Sebag. Feature selection as a
one-player game. In International Conference on
Machine Learning, pages 359–366, 2010.

[8] E. Glaab, J. Bacardit, J. M. Garibaldi, and
N. Krasnogor. Using rule-based machine learning for
candidate disease gene prioritization and sample
classification of cancer gene expression data. PloS one,
7(7):e39932, 2012.

[9] I. Guyon and A. Elisseeff. An introduction to variable
and feature selection. The Journal of Machine
Learning Research, 3:1157–1182, 2003.

[10] M. A. Hall. Correlation-based feature selection for
machine learning. PhD thesis, The University of
Waikato, 1999.

[11] C. Holmesparker, M. E. Taylor, A. K. Agogino, and
K. Tumer. Clean rewards to improve coordination by
removing exploratory action noise. In Proceedings of
the 2014 IEEE/WIC/ACM International Joint
Conferences on Web Intelligence (WI) and Intelligent
Agent Technologies (IAT)-Volume 03, pages 127–134,
2014.

[12] M. M. Kabir, M. M. Islam, and K. Murase. A new
wrapper feature selection approach using neural
network. Neurocomputing, 73(16):3273–3283, 2010.

[13] A. Y. Ng. On feature selection: learning with
exponentially many irrevelant features as training
examples. 1998.

[14] A. Y. Ng. Feature selection, l 1 vs. l 2 regularization,
and rotational invariance. In Proceedings of the
twenty-first international conference on Machine
learning, page 78, 2004.

[15] H. Peng, F. Long, and C. Ding. Feature selection
based on mutual information criteria of
max-dependency, max-relevance, and min-redundancy.
Pattern Analysis and Machine Intelligence, IEEE
Transactions on, 27(8):1226–1238, 2005.

[16] M. Sokolova and G. Lapalme. A systematic analysis of
performance measures for classification tasks.
Information Processing & Management,
45(4):427–437, 2009.

[17] O. Soufan, D. Kleftogiannis, P. Kalnis, and V. B.
Bajic. Dwfs: A wrapper feature selection tool based
on a parallel genetic algorithm. PloS one,
10(2):e0117988, 2015.

[18] R. S. Sutton and A. G. Barto. Introduction to
Reinforcement Learning. MIT Press Cambridge, MA,
USA, 1998.

[19] C. J. Watkins and P. Dayan. Q-learning. Machine
learning, 8(3-4):279–292, 1992.

[20] I. H. Witten, E. Frank, and M. A. Hall. Data Mining:
Practical machine learning tools and techniques.
Morgan Kaufmann, 2011.

98

Human Guided Ensemble Learning in StarCraft

Timothy Verstraeten
∗

Tom Jaspers
Anna Harutyunyan

Roxana Rădulescu
∗

Robrecht Conjaerts
Peter Vrancx

Yannick Jadoul
Tim Brys

Ann Nowé

tiverstr,rradules@vub.ac.be
Vrije Universiteit Brussel

Pleinlaan 2
1050 Elsene

ABSTRACT
In reinforcement learning, agents are typically only rewarded
based on the task requirements. However, in complex envi-
ronments, such reward schemes are not informative enough
to efficiently learn the optimal strategy. Previous literature
shows that feedback from multiple humans could be an ef-
fective and robust approach to guide the agent towards its
goal. However, this feedback is often too complex to specify
beforehand and should generally be given during the learn-
ing process. We introduce real-time human guided ensemble
learning, in which feedback from multiple advisers is learned
simultaneously with the agent’s behaviour. We evaluate
our approach in a small scale one-on-one combat scenario
in StarCraft: Brood War. Our preliminary results show
that a single expert adviser can provide proper guidance,
while using groups of multiple advisers does not improve
the convergence speed. In future work, we will investigate
an alternative to the tile-coding approximator in order to
effectively incorporate advice from multiple humans.

Categories and Subject Descriptors
I.2.6 [Artificial Intelligence]: Learning

Keywords
human advice, reward shaping, reinforcement learning, en-
semble learning

1. INTRODUCTION
Reinforcement learning (RL) [17] allows goal-oriented agents

that are able to sense and act upon their surroundings to
learn an optimal control-policy from scratch just by interact-
ing with the environment. Despite offering powerful learning
mechanisms, one major drawback of RL stands out: an im-
practical large amount of experience is necessary to reach
a good solution. Speeding up the learning process has thus
become a focus point in RL research. A few developed direc-
tions include learning by demonstration to acquire a good
initial policy [2, 21], transfer learning from another related
RL task [20] and providing additional guidance to the RL
agent [25].

∗These authors contributed equally to this work.

We focus here on the latter approach, namely reward
shaping (RS), through which the agent can receive a more
informative reward after each action taken, thus enabling it
to converge faster towards the optimal policy. This addi-
tional guidance during the learning process can be obtained
by specifying knowledge manually into the RS function [12]
or by learning feedback from a human adviser as a suitable
RS function [8], an approach that is considered in the cur-
rent work.

While leveraging the human problem solving capacity can
provide an immeasurable benefit, one has to consider han-
dling the mistakes that humans can make during the feed-
back process. One possible approach consists in building
an ensemble system that can robustly handle guidance from
multiple sources, in order to avoid the unreliability issue
arising from only one [7].

We introduce human ensemble learning, a mechanism which
aggregates a set of learners, each of them guided by a hu-
man adviser. Related work already provides frameworks to
combine the advice from multiple external sources [5, 10]. In
these cases, human feedback is considered either as a sepa-
rate reward function, independent but closely related to the
actual reward function imposed by the environment, or as a
priorly known expert advice function. However, in most set-
tings, human advice is secondary to the feedback from the
environment with as sole purpose to guide the agent. Addi-
tionally, behavioural advice is in general too complicated to
manually specify. We provide a framework to learn multi-
ple human advice functions and incorporate them as reward
shapings to guide the ensemble agent towards the optimal
strategy.

As a testing scenario we have chosen StarCraft,1 a Real-
Time Strategy (RTS) game in which complex combat strate-
gies have to be employed in order to win the game. While
RTSs have proven to be a challenge for AI [14, 16], humans
seem to succeed in devising different strategies and solutions
to achieve victory.

Outline. We start by explaining the components of our
human guided ensemble learning framework in Sections 2, 3
and 4. Section 5 describes our experimental setup, while in
Section 6 we discuss our preliminary results. We conclude
our work in Section 7.

1Created by Blizzard Entertainment: http://blizzard.
com/games/sc/

99

2. REINFORCEMENT LEARNING
In reinforcement learning, an agent learns the policy that

maximizes the cumulative reward for achieving a certain goal
over a sequence of observations at time-steps t ∈ N. Based
on its current policy and environment, the agent executes an
action and updates its policy based on the reward given by
the environment. This environment is modelled as a Markov
decision process (MDP) M = (S,A, T, γ,R) [15], where S,A
are the state and action spaces, T : S × A × S → [0, 1] is a
probabilistic transition function, γ is a discount factor deter-
mining the importance of future rewards and R : S×A×S →
R is the immediate reward function.

An agent behaves according to a policy π : S × A →
[0, 1], meaning that in a given state, actions are selected
according to a certain probability distribution. Optimizing
π is equivalent to maximizing the expected discounted long-
term reward from a given starting state s0 and action a0:

Qπ(s, a) = ET,π

[∞∑

t=0

γtrt+1 | s = s0, a = a0

]
(1)

where rt+1 is the reward obtained upon taking action at at
state st. This is the idea of value-based methods, in which a
value function (VF) maintains and optimizes iteratively the
expected long-term reward for each state-action pair based
on the observations made during explorations of the envi-
ronment.

A method of this kind is SARSA, which updates its Q-
values using the temporal-difference (TD) δ between subse-
quent state-action pairs (s, a) and (s′, a′):

Qπ(s, a) = Qπ(s, a) + αδ (2)

δ = rt+1 + γQπ(s′, a′)−Qπ(s, a) (3)

where α is the learning rate, and s′ and a′ are taken accord-
ing to respectively T and π. This approach falls into the
category of on-policy methods, which means the agent will
learn the value function of its behaviour policy.

In general, the target policy can be different from the be-
haviour, in which case, the learning is off-policy. For exam-
ple, Q-learning computes the value function of the greedy
policy π∗. The TD update rule is replaced by:

Qπ
∗
(s, a) = Qπ

∗
(s, a) + αδ

δ = rt+1 + γmax
a′

Qπ
∗
(s′, a′)−Qπ∗(s, a)

where the TD is computed w.r.t. the greedy action a′.

3. REWARD SHAPING
In order to speed up convergence towards the optimal pol-

icy, guidance can be provided to the agent by augmenting
the reward function R with an additional more informative
reward shaping function F .

It is necessary and sufficient to consider F as a potential-
based reward shaping function (PBRS) in order to guarantee
policy invariance and make sure that the shaping does not
lead to learning sub-optimal policies [13]. A PBRS func-
tion is constrained by a real-valued potential function Φ as
follows:

F (s, s′) = γΦ(s′)− Φ(s)

We can extend F further by including behavioural knowl-

i

i

i

i

i

Figure 1: Hierarchy of ensemble system – The ensem-
ble agent executes an action at based on the preferences
pi(st, a

j
t) for every possible action ajt of each of its off-policy

sub-agents i. The sub-agents update their Q-values based
on a reward signal and the next state given by the environ-
ment. This reward signal is shaped for each agent by f it+1,
a value provided by an advice PBRS function. The advice
function captures the intended feedback of human adviser i,
given his reward signals hit+1.

edge, giving us an advice PBRS function [26].

F (s, a, s′, a′) = γΦ(s′, a′)− Φ(s, a) (4)

Inserting such knowledge manually under the constraints
of a potential function Φ can prove to be difficult. How-
ever, a framework can be constructed to incorporate exter-
nal guidance, e.g., by a human expert, as a secondary VF
[9]. This additional VF specifies the values of the advice
policy intended by the human. More specifically, it defines
the discounted future rewards given by the adviser at each
state-action, based on the immediate rewards provided by
the human after each action (i.e., fixed positive rewards for
encouraged actions and zero otherwise).

The agent learns this advice policy simultaneously with
its own behaviour (defined by the primary VF). In order to
guarantee convergence towards the intended advice function,
the secondary VF is learned on-policy [9].

This VF can then be used as a potential function in Equa-
tion 4 in order to shape the rewards given by the environ-
ment. Combining this advice PBRS function with Equa-
tion 3, we have:

δ = rt+1 + ft+1 + γQ(s′, a′)−Q(s, a)

ft+1 = γΦt+1(s′, a′)− Φt(s, a)

where Φt is the secondary VF at time t.

4. HUMAN GUIDED ENSEMBLE LEARN-
ING

In ensemble RL, an agent manages multiple sub-agents
j and aggregates their individually learned policies πj in
order to define one ensemble policy π [3, 24]. One way to
combine the strategies of the sub-agents is to compute a

100

preference value p(s, a) for each action a in state s of the
ensemble agent by aggregating the preference values of the
sub-agents. An example of this is rank voting (RV) [24], in
which each sub-agent j assigns a rank rj(s, ai) ∈ [1, · · · , n]
to all its n actions ai in state s, such that:

rj(s, a1) > rj(s, a2)⇔ Qπj (s, a1) > Qπj (s, a2)

Ties in the Q-values result in the same rank for both actions.
The preference values of the ensemble agent are then de-

scribed as follows:

p(s, a) =

m∑

j=1

rj(s, a)

An exploratory policy (such as ε-greedy [22]) can be estab-
lished over these preference values to define the behaviour
of the learning ensemble agent.

Using the combination of ensemble learning and reward
shaping by an external human adviser, we can now describe
a framework that is capable of aggregating feedback, given
in parallel by multiple human advisers, in order to offer a
more robust guiding strategy for an RL agent. Every human
guides a single sub-agent. This means that the ensemble
agent manages sub-agents observing the same experience,
but with differently shaped Q-values.

With the aim of maximizing the diversity over the pref-
erences of the sub-agents, we maintain an ensemble of Q-
learning agents (i.e., off-policy learners), as this does not
include learning the similar exploratory behaviour of the
agents. However, the secondary VFs (i.e., the potential
functions Φ, used to define the advice PBRS function in
Equation 4) should be learned on-policy [9]. An overview of
the ensemble system is given in Figure 1.

5. EXPERIMENTS
We evaluate our human guided ensemble learning frame-

work in the context of a one-on-one combat scenario in Star-
Craft. We investigate whether incorporating feedback from
multiple humans yields faster convergence towards the opti-
mal policy.

5.1 StarCraft Environment
We assess our approach in the context of StarCraft: Brood

War, a Real-Time Strategy (RTS) video game. As a rein-
forcement learning framework, we employ Brood War API
(BWAPI), which is an open-source library that allows scripted
interaction with the StarCraft environment [4]. It has been
used in RL research as an experimental setting for both small
scale combat [23] as well as more complex scenarios [6].

We focus on training an agent for a small scale one-on-one
combat in a setting inspired by [19]. This allows us to study
the performance of our ensemble agent, solving a rather sim-
ple task in a complex, yet entertaining, environment.2

The state space of the StarCraft environment consists of
the following features: the position of the agent in the con-
tinuous xy-coordinate system (with x, y ∈ [0, 1000]), the ab-
solute vector from the agent to the enemy w.r.t. the co-
ordinate system, the difference in health points (HP) and
whether or not the enemy is engaging in combat. An agent
can move in all cardinal directions over a fixed distance and

2The source code is available at https://github.com/
timo-verstraeten/human-ensembles-starcraft

is allowed to engage the enemy, move towards the enemy or
stay idle. Additionally, the agent can shoot from a certain
distance, while the enemy can only attack in close range.

The state space is discretized by employing a tile-coding
function approximator [17], such that each feature has 4
tilings. This implies that the state space is not jointly dis-
cretized over all features, and thus features are considered
independently in the computation of a Q-value.

The goal of the agent is to kill the enemy using a minimal
number of steps, while having left as many health points
as possible. The agent receives rewards according to the
following formula:

R(s, s′) =

{
HPagent −HPenemy, if a player dies

−0.3, otherwise

where HPagent ∈ [0, 20] and HPenemy ∈ [0, 35] are respec-
tively the agent’s and enemy’s HP. The damage done by
each character was set in such a way that close-range com-
bat would kill the agent. Thus, a more complex strategy
than ‘rushing’ towards the enemy should be employed by
the agent in order to win.

5.2 Experimental Setup
For each experiment, we assembled unique groups of ad-

visers, each consisting of five people. During each experi-
ment, the agent receives advice simultaneously from all the
members of the group. Each individual was isolated and
only had the real-time visual information as it is given in
the original StarCraft environment. Thus, no information
about the underlying reinforcement learning problem was
available (such as Q-values). Prior to the experiments, they
were also informed about optimal and suboptimal strategies
that can be employed in the combat scenario, shown in Fig-
ure 2, and the possible actions the agent can take, to ensure
that each human has the knowledge to be a proper adviser.
They could communicate their feedback in the form of a bi-
nary signal (i.e., they provide a positive reward whenever
they want to endorse the agent’s action) during the first 5
episodes of the agent’s learning process. We have chosen to
only allow positive feedback signals, as learning sparse and
all-positive (or all-negative) feedback captures the intended
advice more robustly [9]. We made sure that the advisers
had enough time to provide their feedback on the current
action by slowing down the game speed. After the first 5
episodes, the agent had to learn the optimal behaviour on
its own for 195 additional episodes. An episode terminates
when one of the characters is defeated. Additionally, after
1000 steps, the agent rushes towards the enemy in order to
cut-off the episode.

As explained before, the optimal policies of the sub-agents
are learned off-policy, while the secondary VFs are learned
on-policy. We respectively used Q(λ) and SARSA(λ), which
both employ eligibility traces in order to update previously
encountered Q-values with an impact factor of λ, using the
currently observed reward [18].

The ensemble agent uses RV to choose an action based on
the greedy actions of the sub-agents. Following an ε-greedy
policy (ε = 0.1), the ensemble agent can execute this action
or alternatively select a random action with a probability of
ε. The discount factor γ is 1.0 in our problem setting. For
the learning rate α and eligibility traces decay factor λ for
our primary VF, we respectively use 0.40 and 0.95, which are
jointly optimized for an ε-greedy Q(λ) agent (using the same

101

(a) Kamikaze strategy – The agent rushes towards the
enemy in an attempt to minimize the number of steps
(local optimum).

(b) Optimal strategy – The agents shoots from behind
the trees, where the enemy cannot reach.

Figure 2: Possible strategies in the StarCraft scenario

ε and γ as mentioned before). Additionally, we took the
number of tilings (of the CMAC function approximator) to
be 4. The tile resolutions for the distance and angle features
(defining the vector between the agent and enemy) were set
to 30 and 10, while the resolution for the health feature was
set to 0.7. These tiling parameters are chosen in such a way
that they generalize the state space well, such that there is a
noticeable impact of the human advice, while still providing
good results. The positive reward provided by the human
advisers is set to 10, as this gives us the best results. We
alter γ and α used in the human advice potentials to 0.5 and
0.6 to ensure faster convergence in the secondary VFs.

6. RESULTS AND DISCUSSION
We first present results for guidance by a single expert,

in comparison with an ensemble of five expert advisers. We
analyse the effect of the function approximator under human
advice on the results. We then study the results obtained
by introducing non-expert advisers, comparing their perfor-
mance and advice frequencies to the ensemble of experts.

6.1 Single Expert vs Multiple Experts
We show results for two groups which are new to the advis-

ing scene, and a group of experts (i.e., the first five authors of
this paper) who know the underlying state-action space, are
familiar with RL and had a lot of individual practice with
offering feedback to StarCraft agents. They can practice the
feedback mechanism for 1 test trial, after which they do 9
actual trials. These 9 trials are incorporated in the results.

Figure 3 presents a first view over the results, offering a
comparison between the group of experts, a single expert
adviser and the Q-learning baseline in terms of rewards and
steps. First, we notice that both cases involving human
advice manage to surpass the baseline, with multiple experts
advisers being asymptotically the best, by a slight difference.
However, the single expert adviser does manage to converge
faster, while reducing drastically the number of steps for the
initial episodes.

Empirically, ensemble learning tends to generalize better
in most cases, compared to an agent learning in isolation [1,
11]. Nonetheless, for the multiple expert advisers, we can see
that the gained cumulative reward stays close to the base-

line. We can speculate that the lack of coordination might be
detrimental to the overall performance. The reason for this
might be that the tile-coded function approximator gener-
alizes too much by assuming independent features. A single
expert knows how to take advantage of this generalization
in order to guide the agent downwards and then right. How-
ever, the variety in the advice from multiple humans makes
coordinating this exploitation more difficult.

We take a closer look on how the function approximator
affects our results. Figure 4 shows the normalized frequen-
cies of advice given by a single adviser (a) and multiple ex-
pert advisers (b). We can see that the feedback is naturally
less sparse for multiple advisers. The effect of the func-
tion approximator is depicted in sub-plots (c) and (d) for
respectively a single and multiple advisers. As each feature
is handled independently in the tile-coding, the advice gets
generalized over all features separately. These plots show
the extrapolation of advice over the x and y coordinates.
The optimal policy is in short “first go down for a while,
then go right” (w.r.t. the starting position of the agent, as
shown in Figure 2). For a single adviser, this can easily be
done by rewarding the right actions. This is demonstrated
in sub-plot (c), where we have two lines where the effective
advice is concentrated (i.e., one around x = 500 and one
around y = 400). However, when all five advisers give a
positive reward for going down, they all have to coordinate
to go right afterwards at the same moment. This lack of
coordination is shown in sub-plot (d), where the effective
advice is more evenly distributed in certain portions of the
state space. Notice that the single vertical line (x = 500)
is still intense, meaning that all advisers agree upon going
down from the starting position.

The decrease in performance can also be due to the sim-
plicity of the policy to learn (i.e., go down, then right, as
depicted in Figure 2b). The main difficulty of the problem is
that it is easier for the agent to minimize its number of steps
(see Figure 2a), rather than to learn a more complex combat
behaviour. Such a sub-optimal strategy can easily be pre-
vented using only one expert adviser, while having multiple
advisers introduces unnecessary variance in the guidance [1].

Thus, even though ensembles of advisers reduce the noise
inherent to independent human advice, the function approx-

102

-20

0

20

0 50 100 150 200
Episode

S
m

oo
th

ed
 a

ve
ra

ge
 r

ew
ar

d

setting

Multiple Expert Advisers

Single Expert Adviser

Q-Learning Baseline

(a) Rewards

0

20

40

60

80

0 50 100 150 200
Episode

S
m

oo
th

ed
 a

ve
ra

ge
 s

te
ps

setting

Multiple Expert Advisers

Single Expert Adviser

Q-Learning Baseline

(b) Steps

Figure 3: Comparison of the average smoothed rewards and steps per episode over 9 trials between advice from multiple
humans, advice from a single (expert) human, and a baseline without any human advice. The human advice is given in the
first 5 episodes. The data is smoothed using local polynomial regression. The grey areas around the line plots represent the
95% confidence intervals associated with the smoothing.

(a) Single expert (b) Multiple experts

ww�
ww�

300

400

500

600

700

400 500 600 700
x

y

0.00

0.25

0.50

0.75

1.00
frequency

(c) Single expert (through tile-coding)

300

400

500

600

700

400 500 600 700
x

y

0.00

0.25

0.50

0.75

1.00
frequency

(d) Multiple experts (through tile-coding)

Figure 4: (a) and (b) show the normalized frequency of advice per visited state, given by respectively a single expert and group
A, consisting of five expert advisers. (c) and (d) present the generalization of these frequencies over each feature independently
when put through the tile-coder. (d) is thus a view of what the effective advice would be if all the feedback from the experts
were accumulated and given to a single agent. These results show only the extrapolation over the x and y features.

imator generalizes the ensemble advice too much over single
features, such that coordination to counter the extrapolated
advice is necessary. On the other hand, when we have a

simple target policy, the human advice could have less noise
than the variance introduced by the ensemble learner.

103

-40

-20

0

20

0 50 100 150 200
Episode

S
m

oo
th

ed
 a

ve
ra

ge
 r

ew
ar

d

setting

Group A (Experts)

Group B (Non-experts)

Group C (Non-experts)

Q-Learning Baseline

(a) Rewards

0

20

40

60

80

0 50 100 150 200
Episode

S
m

oo
th

ed
 a

ve
ra

ge
 s

te
ps

setting

Group A (Experts)

Group B (Non-experts)

Group C (Non-experts)

Q-Learning Baseline

(b) Steps

Figure 5: Comparison of the average smoothed rewards and steps per episode over 9 trials between two non-expert groups and
one expert group. The human advice is given in the first 5 episodes. The data is smoothed using local polynomial regression.
The grey areas around the line plots represent the 95% confidence intervals associated with the smoothing.

0.0

0.1

0.2

0.3

0.4

1 2 3 4 5
Episode

P
er

ce
nt

ag
e

of
 a

dv
ic

e

Human 1

Human 2

Human 3

Human 4

Human 5

(a) Group A (Experts)

0.0

0.1

0.2

0.3

0.4

1 2 3 4 5
Episode

P
er

ce
nt

ag
e

of
 a

dv
ic

e

Human 1

Human 2

Human 3

Human 4

Human 5

(b) Group B (Non-experts)

0.0

0.1

0.2

0.3

0.4

1 2 3 4 5
Episode

P
er

ce
nt

ag
e

of
 a

dv
ic

e

Human 1

Human 2

Human 3

Human 4

Human 5

(c) Group C (Non-experts)

Figure 6: Fraction of steps when advice was given by each human over the 9 trials per episode.

6.2 Experts vs Non-Experts
We now investigate the human advice over the different

groups, and evaluate it in terms of impact on the conver-
gence speed and overall performance. Figure 5 presents the
comparison between the expert and the non-expert subject
groups, against the Q-learning baseline in terms of rewards
and steps. The expert group is the only one that manages
to get a clear separation from the baseline, while group C
requires the most episodes before convergence. In terms of
steps, the groups generally follow the trend of the Q-learning
case, although the expert group seems to have a slower start.
Again, group C requires the most episodes before conver-
gence. Moreover, we noticed during our experiments that
the performance varies a lot from run to run, as we only
allowed for positive feedback to be given and the advisers
could not always contribute a lot to the agent’s behaviour.
Figure 6 presents the fraction of steps in which advice is
given by each human in each group, for each of the first 5
episodes, over all the trials. Group C is the most homoge-
neous in terms of advice quantity, while for the other groups,
there are one or two main contributors. We can link these
findings back to the hypothesis that the lack of coordination
worsens the convergence speed. The advice given by group
A and B are mostly defined by one or two persons, which
means these persons can coordinate the advice better. In
contrast, the people in group C give an equal amount of
advice, which makes coordination more difficult.

7. CONCLUSIONS
We introduced real-time human guided ensemble learning,

a combination of ensemble learning with reward shaping that
learns the advice from multiple experts on-line. We evalu-
ated our approach in a StarCraft setting, controlling a single
agent in combat against one enemy. We had three groups of
five humans, one expert and two non-expert groups, giving
feedback to our learner during the first episodes of a number
of independent trials, and analysed the performance of the
learning process in terms of convergence speed. We noticed
that in our experimental setting, having multiple human ad-
visers does not increase the performance of the agent. When
compared to a single adviser, the learning process converges
less quickly, and at about the same rate as without any
human advice. Further analysis confirmed that multiple hu-
mans did indeed not succeed in outperforming a single ex-
pert adviser.

One of the things that could have affected our results, is
the function approximator, as we noticed that it seemed to
act in a way that was not suited for the relatively sparse
human feedback. The fact that all feature dimensions are
separately tiled, made the learner generalize too much over
a specific action. We noticed that after encouraging a cer-
tain action a few times, the way our function approximator
worked caused these actions to be rewarded in other unre-
lated regions of the state space. Even though a single expert
could still compensate for this flaw, multiple experts cannot

104

avoid it, due to a lack of coordination.
Additionally, the optimal strategy might be too simple

and transparent to the human advisers to have an ensemble
of agents, in contrast to a single human expert, whose advice
function is close to the actual optimal strategy the agent has
to learn.

Though we have not been able to irrefutably conclude that
combined human advice provides an advantage, the results
of our experiments indicate that further research can be ben-
eficial in order to obtain a real-time crowd-sourcing frame-
work for complex RL settings. In future work, we will adapt
the function approximator to avoid generalization over in-
dependent features and re-evaluate our approach. Addition-
ally, we will look into scenarios for which a more complex
strategy should be adapted in order to win the game.

REFERENCES
[1] B. Biggio, G. Fumera, and F. Roli. Proceedings of the

7th International Workshop on Multiple Classifier
Systems (MCS 2007), chapter Bayesian Analysis of
Linear Combiners, pages 292–301. Springer Berlin
Heidelberg, Berlin, Heidelberg, 2007.

[2] T. Brys, A. Harutyunyan, H. B. Suay, S. Chernova,
M. E. Taylor, and A. Nowé. Reinforcement Learning
from Demonstration through Shaping. In Proceedings
of the International Joint Conference on Artificial
Intelligence (IJCAI), 2015.

[3] T. Brys, A. Nowé, D. Kudenko, and M. E. Taylor.
Combining multiple correlated reward and shaping
signals by measuring confidence. In Twenty-Eighth
AAAI Conference on Artificial Intelligence, pages
1687–1693, 2014.

[4] BWAPI. Bwapi: An API for interacting with
Starcraft: Broodwar (1.16.1).
https://code.google.com/p/bwapi/, 2012.

[5] H. S. Chang. Reinforcement learning with supervision
by combining multiple learnings and expert advices. In
American Control Conference, Minneapolis, MN,
USA, 14–16 June 2006, 2006. IEEE.

[6] K. Efthymiadis and D. Kudenko. Using plan-based
reward shaping to learn strategies in starcraft:
Broodwar. In Computational Intelligence in Games
(CIG), 2013 IEEE Conference on, pages 1–8. IEEE,
2013.

[7] A. Harutyunyan, T. Brys, P. Vrancx, and A. Nowé.
Multi-scale reward shaping via an off-policy ensemble.
In Proceedings of the 2015 International Conference
on Autonomous Agents and Multiagent Systems, pages
1641–1642, 2015.

[8] A. Harutyunyan, T. Brys, P. Vrancx, and A. Nowé.
Shaping mario with human advice. In Proceedings of
the 2015 International Conference on Autonomous
Agents and Multiagent Systems, pages 1913–1914,
2015.

[9] A. Harutyunyan, S. Devlin, P. Vrancx, and A. Nowé.
Expressing arbitrary reward functions as
potential-based advice. In Proceedings of the
Twenty-Ninth AAAI Conference on Artificial
Intelligence, 2015.

[10] W. B. Knox and P. Stone. Reinforcement learning
from simultaneous human and MDP reward. In
Proceedings of the 11th International Conference on

Autonomous Agents and Multiagent Systems-Volume
1, pages 475–482, 2012.

[11] P. S. A. Krogh. Learning with ensembles: How
over-fitting can be useful. In Proceedings of the 1995
Conference, volume 8, page 190, 1996.

[12] A. Ng. Shaping and Policy Search in Reinforcement
Learning. University of California, Berkeley, 2003.

[13] A. Y. Ng, D. Harada, and S. Russell. Policy invariance
under reward transformations: Theory and application
to reward shaping. In Proceedings of the Sixteenth
International Conference on Machine Learning, pages
278–287, 1999.

[14] S. Ontanón, G. Synnaeve, A. Uriarte, F. Richoux,
D. Churchill, and M. Preuss. A survey of real-time
strategy game AI research and competition in
StarCraft. Computational Intelligence and AI in
Games, IEEE Transactions on, 5(4):293–311, 2013.

[15] M. L. Puterman. Markov Decision Processes: Discrete
Stochastic Dynamic Programming. John Wiley &
Sons, Inc., 1st edition, 1994.

[16] G. Robertson and I. Watson. A review of real-time
strategy game ai. AI Magazine, 35(4):75–204, 2014.

[17] R. S. Sutton and A. G. Barto. Reinforcement learning:
An introduction. MIT press Cambridge, 1998.

[18] R. S. Sutton and B. Tannert. Temporal-difference
networks. In L. Saul, Y. Weiss, and L. Bottou, editors,
Advances in Neural Information Processing Systems
17 (NIPS 2004).

[19] M. E. Taylor, N. Carboni, A. Fachantidis, I. Vlahavas,
and L. Torrey. Reinforcement learning agents
providing advice in complex video games. Connection
Science, 26(1):45–63, 2014.

[20] M. E. Taylor and P. Stone. Transfer learning for
reinforcement learning domains: A survey. The
Journal of Machine Learning Research, 10:1633–1685,
2009.

[21] M. E. Taylor, H. B. Suay, and S. Chernova.
Integrating reinforcement learning with human
demonstrations of varying ability. In The 10th
International Conference on Autonomous Agents and
Multiagent Systems-Volume 2, pages 617–624, 2011.

[22] C. J. C. H. Watkins. Learning from delayed rewards.
PhD thesis, University of Cambridge England, 1989.

[23] S. Wender and I. Watson. Applying reinforcement
learning to small scale combat in the real-time
strategy game StarCraft: Brood War. In IEEE
Conference on Computational Intelligence and Games
(CIG2012), pages 402–408. IEEE, 2012.

[24] M. Wiering and H. Van Hasselt. Ensemble algorithms
in reinforcement learning. IEEE Transactions on
Systems, Man, and Cybernetics, Part B: Cybernetics,
38(4):930–936, 2008.

[25] E. Wiewiora. Reward Shaping. In C. Sammut and
G. Webb, editors, Encyclopedia of Machine Learning,
pages 863–865. Springer US, 2010.

[26] E. Wiewiora, G. Cottrell, and C. Elkan. Principled
methods for advising reinforcement learning agents. In
T. Fawcett and N. Mishra, editors, Proceedings of the
20th International Conference on Machine Learning
(ICML03), pages 792–799, 2003.

105

Learning Agents for Iterative Voting

Filipo Studzinski Perotto
Université Toulouse Capitole

Faculté d’Informatique
Toulouse, France

filipo.studzinski-
perotto@ut-capitole.fr

Stéphane Airiau
Université Paris-Dauphine
PSL Research University,
CNRS, UMR, LAMSADE

Paris, France
stephane.airiau@dauphine.fr

Umberto Grandi
Université Toulouse Capitole

Faculté d’Informatique
Toulouse, France

umberto.grandi@ut-
capitole.fr

ABSTRACT
This paper assesses the learning capabilities of agents in
collective decision. Each agent is endowed with a private
preference concerning a number of alternatives, and partic-
ipates in an iterated election using the plurality rule (aka.
first-past-the-post). Agents get rewards depending on the
winner of each election, and adjust their voting strategy us-
ing reinforcement learning. By conducting extensive simula-
tions, we show that in this setting our agents are capable of
learning how to take decisions at the level of well-known vot-
ing procedures that need more information, and that these
decisions have good choice-theoretic properties even when
increasing the number of agents or candidates. We also com-
pare a number of reinforcement learning methods and their
efficacy in this setting.

1. INTRODUCTION
In a situation of collective choice, we say that an agent is
voting strategically, or that she is manipulating, when the
agent does not submit her sincere view to the voting system
in order to obtain a collective result that she prefers to the
one that would be obtained had she voted sincerely. A clas-
sical result in social choice theory showed that all sensible
voting rules are susceptible to strategic voting [8, 18]. In
fact, strategic voting may be exploited to make better de-
cisions in several situations where, for instance, agents are
confronted with a sequence of repeated elections, from where
an interesting compromising candidate can be elected.

The plurality rule, aka. first-past-the-post, selects the
alternatives that are ranked first by the highest number of
voters. Its computation is quick and its communication costs
very low, but it suffers from numerous problems. For exam-
ple, it is possible that the plurality winner would lose in
pairwise comparison against all other alternatives. If how-
ever the plurality rule is used in an iterative fashion, staging
sequential elections in which at each point in time one of the
voters is allowed to manipulate, then it constitutes an effec-
tive tool for selecting an outcome at equilibrium with good
properties [13]. This setting is known as iterative voting.
Several recent papers explored its convergence for various
voting rules, and assessed the quality of the winner [11, 17,
10, 12, 14, 16].

Most works in this field suffer from two main drawbacks.
First, agents are highly myopic in not taking into account
the history of their interactions, and in having a horizon
for strategic thinking of one single iteration. It creates an
artificial asymmetry between the available knowledge and
the strategic behavior. Second, to ensure convergence it is

required that agents manipulate one at a time, a property
that is difficult to enforce.

In this paper, we tackle both aspects by studying a con-
current manipulation process in which agents have the
capability of learning from their past interaction. In
our setting, iterative voting is seen as a repeated game in
which voters use reinforcement learning to cast their ballots.
We limit the information available to the learning agents to
only the winner of each iteration step (when classic iterative
voting methods require more information). Our goal is to
show that multiagent learning can be a solution in the con-
text of iterative voting: a learning agent bases her decisions
on the history of past interactions, and because of the learn-
ing rate, the ballot choice is not purely myopic. In addition,
in our model all the learning agents are allowed to change
their ballot at the same time. With myopic agents, this may
lead to a cycle of change of ballots [13]. The question we ask
in this paper is whether learning help agents make a good
collective decision [19]: do we observe convergence, and is
the winner good according to choice-theoretic criteria?

We show experimentally that our learning agents are able
to learn how to make collective decisions under standard
measures of decision quality, such as the Condorcet efficiency
and the Borda score. The contribution of this paper is
twofold: we show that iterative learning 1) outperforms sev-
eral other iterative voting methods using less information,
and 2) is comparable to a well-known procedure called single
transferable vote.

The paper is organized as follows. Section 2 provides
the basic definitions and reviews the literature on itera-
tive voting and multiagent reinforcement learning. Section 3
presents the specifics of our setting, and Section 4 discusses
the obtained results. Section 5 concludes the paper.

2. ITERATIVE VOTING AND MULTIAGENT
REINFORCEMENT LEARNING

We now introduce the framework of iterative voting, as well
as a number of classical voting procedures, and we present
the basics of multiagent reinforcement learning.

2.1 Voting Rules
Let C be a finite set of m candidates or alternatives and
N be a finite set of n agents. Based on their preferences,
agents in N choose an alternative in C. Agents are typically
assumed to have preferences over candidates in C in the
form of a linear order, i.e., a transitive, anti-symmetric and
complete binary relation over C. We denote with >i the
preference of agent i and with P = (>1, . . . , >n) the profile

106

listing all individual preferences. Hence, we write b >i a to
denote that agent i prefers candidate b to candidate a.

A (non-resolute) voting rule is a function w that associate
with every profile P a non-empty subset of winning candi-
dates w(P) ∈ 2C \ ∅. The simplest voting rule, and the
one involving as little communication as possible among the
agents, is the following rule:
Plurality: Each agent votes for a single candidate, and

the candidates with the highest number of votes win.
Collective decisions taken by plurality are known to suffer
from serious shortcomings, and a large number of different
voting rules have been proposed in the literature to overcome
them (see, e.g., [5]). In this paper we will make use of the
following definitions:
Borda: Each agent submits her full linear order, and a

candidate c is given m − j points for each agent that
is ranking c in j − th position. The candidates that
receive the highest number of points are elected.

Copeland: The score of a candidate c is the number of
pairwise comparisons she wins (i.e., contests between
c and another candidate a such that there is a major-
ity of voters preferring c to a) minus the number of
pairwise comparisons she loses. The candidates with
the highest score win.

Single Transferable Vote (STV): At the first round the
candidate that is ranked first by the fewest number of
voters gets eliminated (ties are broken following a pre-
determined order). Votes initially given to the elimi-
nated candidate are then transferred to the candidate
that comes immediately after in the individual prefer-
ences. This process is iterated until one alternative is
ranked first by a majority of voters.

With the exception of STV, all rules considered thus far are
non-resolute, i.e., they associate a set of winning candidates
with every profile of preferences. A tie-breaking rule is then
used to eliminate ties in the outcome and obtain a single
winner. In this paper we make use of linear tie-breaking,
i.e., we assume that the set C of candidates is ordered by
a ranking �C , and in case of ties the alternative ranked
highest by �C is chosen as the unique outcome.

2.2 Voting Games
Each agent tries to obtain the best winning alternatives fol-
lowing her own preferences, a process that can be repre-
sented by a normal-form game in the following way. The
possible actions available to players are all ballots that they
are allowed to submit to the voting procedure, i.e., the name
of a candidate in the case of plurality, and their full linear or-
der in the case of Borda, Copeland and STV. Agents face the
choice of submitting their truthful ballot, i.e., a ballot cor-
responding to their individual preferences, or to vote strate-
gically. Each joint action entails a winner of the election,
which is then assessed by the agents using their (truthful)
preferences. Observe that we are still in the realm of ordinal
preference, not having associated any utility to candidates.

The peculiar structure of voting games generates a plethora
of undesirable Nash-equilibria. For instance, with the plu-
rality rule and more than 3 agents, a joint-action with unan-
imous support for one candidate, even one that is not liked
by any voter, is a Nash equilibrium, since no agent can uni-
laterally change the outcome of plurality.

It is therefore of no surprise that the problem of equi-
librium selection in voting games has been the subject of

multiple publications in recent years, starting from the pro-
posal to introduce a micro-gain to encourage truthful voting
[15], to weighting the effort of voting when abstentions are
allowed [7], to a pre-vote negotiation phase [9]. Perhaps the
most simple proposal has been that of restricting the set
of equilibria to those that can be reached via best-response
dynamics from a (possibly truthful) profile [13].

2.3 Iterative Voting
In iterative voting, agents first vote as in traditionnal learn-
ing, then, one at a time, agents can change their ballot. As
explained in Section 2.2, this process can be viewed as a
best-response dynamic over the full voting game defined by
a voting rule and a profile.

Iterative voting is guaranteed to converge for the plurality
rule with linear tie-breaking [13], though for most other vot-
ing rules convergence cannot be guaranteed [11]. Restricted
dynamics, defined by limiting the possible actions available
to players, have therefore been studied to guarantee conver-
gence [17, 10, 14]. In this paper we focus on iterative voting
with the plurality rule and on the following two strategies
for individual manipulation:
Best response: at time t, given the plurality score for each

candidate c at time t− 1, one individual computes her
best response(s) and votes for one;

3-Pragmatists: at time t, given the top three plurality
candidates at time t − 1, one individual manipulates
in favour of her preferred candidate amongst them.

We always assume that the process starts from a truthful
profile and that the agents change their votes following a
sequential turn function. Convergence with 3-pragmatists
manipulation is guaranteed as the set of 3 most-voted can-
didates is not changed by every manipulation step, hence
each agent will manipulate the election only once.

Two main critiques have been raised for this setting. First,
the unrealistic assumption of a deterministic turn function
is the key to guarantee the convergence of iterative voting.
As was already observed in [13], there is no convergence if
individuals are allowed to move at the same time. Second,
individuals are highly myopic, since their strategic horizon
only considers one-step forward in the iterative process and
they do not make use of the history of previous manipula-
tions by other agents when making their next choice.

2.4 Evaluation Criteria
Because there is no consensus on the quality of a collec-
tive outcome, we will study the results on multiple criteria.
Given a profile of preferences (>1, . . . , >n), a Condorcet win-
ner (CW) is a candidate that beats every other candidate in
pairwise comparisons. A CW is not guaranteed to exist, but
a first parameter in assessing a voting rule is the percentage
of profiles in which it elects a CW when there exists one:
Condorcet efficiency: the ratio of profiles where a CW

is elected out of all profiles where a CW exists.
Many voting rules are designed to elect a CW whenever it
exists, such as Copeland. So they have a Condorcet effi-
ciency of 1. Other voting rules, such as Plurality, Borda and
STV may elect a candidate that is not a Condorcet winner.

A second parameter that can be used to measure the qual-
ity of the winner is the Borda score itself:
Borda Score: a candidate c is given m − j points for

each agent ranking c in j-th position in her truthful
preference.

107

The Borda score provides a good measure of how the rule
compromises between top-ranked candidates and candidates
ranked lower in the individual preferences. One interpreta-
tion of the Borda score is that it estimates the average rank
of candidates, and the Borda winner is the candidate with
the highest average rank. Obviously, the Borda rule is the
best rule according to this criterion.When varying the num-
ber of voters or candidates, we measure the ratio between the
Borda score of the elected winner and the maximal Borda
score that can be obtained, i.e., if B(c) is the Borda score
of a candidate c then BR(c) = B(c)/maxa∈C(B(a)).

2.5 Learning in Games
Multiagent reinforcement learning has been used both in co-
operative domains (where the set of agents share the same
goal) and in non-cooperative ones (where each agent is try-
ing to optimize its own personal utility). For cooperative do-
mains, the key issue is that learners obtain a local/personal
reward but need to learn a decision that is good for the so-
ciety of agents. For example, agents that try to optimise
air-traffic [1] care about individual preferences as well as
the global traffic. In this paper, agents are not concerned
about the quality of the outcome for the entire population:
each voter would like one of her favourite candidate to win.
We are in a non-cooperative setting similar to the one of
learning in games: the actions are the different ballots and
agents have preferences over the joint actions (i.e. voters
have preferences over the candidates). One key difference is
that preferences are typically ordinal in voting whereas they
are cardinal for games (see Section 3.1 describing how we
generate cardinal utilities from ordinal ones).

In this paper, we want use a basic multiarmed bandit style
reinforcement learning [20] algorithm for testing whether
agents can learn to make good collective decisions. Many
reinforcement learning algorithms have been used for play-
ing normal form games (though there is a single state), e.g.
joint-action learning [6], gradient-based algorithms such as
IGA-WoLF or WoLF-PHC [4] to name a few. Since no algo-
rithm can be claimed to be best, we focused on showing that
the most basic learning algorithm is able to perform well.

We also chose that agents will only get to observe the cur-
rent winner, and no other information is available to them,
such as the score of all candidates (as done in standard it-
erative voting).

3. LEARNING AND SIMULATION
SETTING

We now describe the settings of our simulations. Each sim-
ulation is defined by the parameters m = |C| (the number
of candidates), n = |N | (the number of voters), T as the
number of iterations, or repeated elections, the agents dis-
poses to learn. We use iterative voting with plurality rule
and lexicographic tie-breaking. Note that the choice of the
tie-breaking method has been shown to be an important fac-
tor in guaranteeing the convergence of iterated voting rules
[11]. We also performed experiments with a randomised tie-
breaking rule, obtaining comparable results.

3.1 Preferences and utilities
While voting is based on ordinal information (i.e; each voter
order of preference among the candidates), reinforcement
learning needs cardinal utility. Hence the need to translate

a preference order >i of agent i into a utility function ui :
C → R. Given an ordering >, let pos(c) be candidate c’s
position, where position 0 is taken by the most preferred
candidate, and |C|−1 by the least preferred. We considered
three possibilities:

Linear utilities: ulini (c) = 1− pos(c)
|C|−1

;

Exponential utilities: uexpi (c) = 1

2pos(c)
;

Logistic utilities: usigi (c) = 1− 1

1+e
−k(pos(c)− |C|−1

2
)
,

The parameter k controls the steepness of the curve in the
last definition. These three different methods to generate
preference values from a preference order represent distinct
satisfaction contexts. Linear utilities corresponds to the
Borda values, meaning that the satisfaction with a given
candidate decreases linearly following the preference order.
Exponential utilities are a more realistic representation, es-
pecially in large domains where alternatives at the top bears
more importance than those at the bottom. They can also be
used to simulate partial orders, since the alternatives below
a certain threshold of utility counts as non-ranked. In this
case, the voters have precise choices, and the satisfaction de-
creases quickly as soon as the elected candidate (the winner)
is not the preferred. In contrast, logistic utilities decrease
slowly in a neighbourhood of the top preferred candidates.
In multiagent collective decision, the possibility of finding
good compromises is conditioned by such different function
curves.

3.2 Profiles generation
Our experiments are averaged over 10.000 preference profiles
generated following the following two distributions:

Impartial culture assumption (IC): preference orders
are drawn uniformly at random.

Urn model with correlation α ∈ [0, 1): The preference
order of the first voter is drawn with uniform proba-
bility among all possible linear orders that are present
in an urn. A number of copies of the first drawn pref-
erence is then put into the urn depending on the pa-
rameter α (exactly, m!

(1
α
−1)

), and the preference of the

second voter is then drawn. The process is repeated
until all n preference orders have been selected.

The urn model is also known as the Polya-Eggenberger model
[3]. The interest of such scheme is to have some correla-
tion between voters, where some observed preference is more
likely to be observed again. The higher the correlation pa-
rameter α the more likely it is that a Condorcet winner
exists, and the less likely it is that a single voter can change
the winner of the plurality rule with a single manipulation.
Note that IC is equivalent to Urn model with α = 0.

3.3 Iterative learning agents
From the point of view of each voter, the proposed settings
correspond to the well-known multiarmed bandit problem
(MAB), a wide studied case of computational reinforcement
learning (RL). A MAB is equivalent to a Markovian Decision
Process (MDP) with a single state [20, 2]. At each iteration
ti the agent must chose one action to carry out among a set
of predefined possible actions. In our voting scenarios, this
corresponds to choosing a candidate c ∈ C to vote for. After
executing the action, a reward r is obtained by the agent,
corresponding to the quality of her choice. The learning

108

mechanism must evaluate the utility of each possible action
during the sequence of interactions, only based on the feed-
back suggested by the reward. In our case, the reward is
the preference value of the elected candidate (the winner)
for the agent.

In our setting, the number of iterations given to the agent
is known in advance. The goal is not to reduce regret, but
learn the best as possible to be able to give the best response
at time T . In the literature, this problem is often called
budget-limited MAB.

It is important to note that, in such iterative voting con-
text, the environment is not stationary. As all agents are
learning at the same time, the election result after each it-
eration can be very unstable. Any RL problem imposes
the necessity of balancing exploration (acting in order to
learn more) and exploitation (acting based on what is al-
ready known, in order to get better rewards), but in our
voting scenarios, where the rewards are strongly dependent
on the other agents actions, if all the agents realise a full
exploration at the same time, it is impossible to learn any-
thing. For this reason, algorithms like the one proposed by
[21], designed to work if the agent is situated in a stable envi-
ronment, cannot work properly. The agents must gradually
stabilise their policies in order to allow for the emergence of
some positive solution.

In our experiments, we compared UCB [2], the standard
representative of the state-of-art family of MAB algorithms,
with adapted versions of classic MAB learning algorithms.
In that case, the agent learns a function Q : C → R+ that
estimates the expected utility of voting for each candidate.
Once a voter i has voted for candidate c and knows the
winner w, it can compute its reward r (the elected winner
is w and we have r = ui(w)), and from there, i updates its
Q value using the following update rule:

Q(c)← αr + (1− α) ·Q(c)

where α is the learning rate used to control the impact of
new information: when α = 0, the new information is not
used, when α = 1, only the new information matters. For
now, we fix α = 0.1.

In this way, we consider four exploration strategies:
adapted-ε-decay: with a probability ε, the voter picks a

candidate at random using a uniform distribution (ex-
ploration), and with a probability 1−ε, the voter picks
the candidate with the highest Q-value (exploitation).
ε is initially set to 1, and its value decreases progres-
sively, allowing a gradual transition from exploration
to exploitation. The decreasing function can be linear,
exponential or logistic, and ε approximates 0 at the
end of the previewed number of iterations T .

adapted-softmax: the voter picks randomly a candidate
by sampling a Boltzmann distribution. The proba-

bility to select a candidate c is proportional to e
Q(c)
τ

where τ is a parameter called temperature: at high
temperature the probability distribution is close to uni-
form (exploration), whereas at low temperature there
is a strong bias towards the best action (exploitation).
The temperature decreases in function of the number
of iterations, in the form γ = T−k

T
, where k parametrises

the steepness of the decreasing rate γ.
optimistic-greedy: in this method, the most simple im-

plementation of the ”optimism in face of uncertainty”
principle, the voter always picks the candidate with

the highest Q-value. In order to do some exploration,
the Q-values are initialised in an optimistic way, and
then, at the beginning, the agent prefers to chose the
less tried actions. In our simulations, we used two im-
plementations of such method: the first one setting all
the initial Q-values to the highest possible reward, and
the second one initialising the Q-values with a copy of
the preference values of the agent.

UCB: in this method, the agent maintains empirical mean
rewards ri obtained by choosing each candidate ci.
At the beginning, the voter tries each candidate once,
in order to get initial observations for the empirical
means; then, at each iteration, the voter picks the can-
didate cj that maximises the upper confidence bound

rj +
√

2 ln t/nj , where nj is the number of times the
candidate cj has been chosen.

In the simulation, all agents use the same exploration
strategy with the same parameters. In order to evaluate
the best learning method for the voting problem, the first
set of experiments compared the different algorithms in dif-
ferent settings. The second set of experiments compares the
learning method with other standard (one round plurality,
Borda, Copeland and STV) and iterative (3-pragmatists,
best-response) voting rules. For the rules that are not res-
olute voting procedures, a tie-breaking following a prede-
termined order over candidates is used. The choice of the
tie-breaking method has been shown to be an important fac-
tor in guaranteeing the convergence of iterated voting rules
[11]. We also performed experiments with a randomised tie-
breaking rule, obtaining comparable results.

Note that when a voter is not pivotal (i.e., changing its
ballot will have no impact on the winner), it receives the pay-
off of the current winner regardless of votes of other voters.
If the voter is not pivotal over a long period and is main-
taining some exploration, if the winner does not change over
that period of time, the expected utility of all candidates will
be the same. So we will observe a convergence of the payoff
of all candidates. Initially though, as all agents are able to
manipulate, no agent is likely to be pivotal.

3.4 Learning algorithms compared
For the voting problem stated in this paper, the most suited
reinforcement learning approaches are the multiarmed ban-
dit algorithms (MAB). Such methods are based on no-contextual
sequential learning. The agent does not know the state of
the system. It can choose among predefined actions, and
the only observation is a reward received after executing the
chosen action. It is a kind of minimal feedback.

As we can see in Figure 1, the best performing method for
our iterated voting scenarios is the version of the optimistic-
greedy strategy where the utilities are initialised with the
preference values. The key issue is the exploration. With
too much exploration, the environment becomes highly noisy
and there is little to be actually learnt. Both ε-greedy and
softmax algorithms makes the agents very explorative at the
beginning, and when an agent explores, sub-optimal actions
are chosen (even the least preferred ones) due to a degree
of randomness present in the decision-making process. That
behaviour disturbs the learning progress of all the agents.
The same happens with classic version of the optimistic-
greedy method, where all the utilities are equally initialised to
the maximal reward possible. The UCB method is also very
conservative, the exploration is made sufficient to guaran-

109

UCB1 E-greedy zero-init linear-decay E-greedy pref-init linear-decay SoftMax Boltzmann zero-init self-adapted

SoftMax Boltzmann pref-init self-adapted Greedy opt-init Greedy pref-init

0 200 400 600 800 1 000 1 200 1 400 1 600 1 800 2 000

Number of Iterations

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85
C

o
n

d
o

rc
et

 E
ff

ic
ie

n
cy

Figure 1: Comparison of the exploration strategies

tee near optimal performance in stationary MAB problems.
However, as our environment is no longer stationary as other
agents are learning at the same time, the exploration is not
adequate and UCB performs poorly.

Initialising the Q-values of each voter with their own pref-
erences accomplishes the role of ”optimism in the face of
incertainty”. In the absence of information, the most opti-
mistic way of initialising the utilities is considering that the
agent could be a dictator: the winner is the voter’s most
preferred candidate, so the expected utility is the utility of
that candidate. A voter is then most likely to vote for can-
didates she prefers at the beginning. If a different candidate
wins the iteration, the bad reward decreases the Q-value,
and the agent has incentives to try other candidates in the
coming iterations. In this way, each agent realises efficient
explorations, trying the candidates that can most likely re-
spond with a good reward, and at the same time, creating
less noise. Another advantage is that such strategy is very
simple, and is naturally tuned to any number of iterations.

4. SIMULATION RESULTS
We now present the main results, showing that a society of
agents using simple learning capabilities can make a “good”
collective decision, comparable to that taken by well-known
voting rules and often better than what standard iterative
voting would recommend. In all results we present next, we
use the urn model with α = 0.1 for generating the prefer-
ences. With the exception of Section 4.3, all experiments in
this section uses exponential utilities, but the results for lin-
ear and logistic utilities are similar and not presented here.

4.1 Learning Dynamics
By considering the result of iterated plurality with learning
agents as a voting rule per se, we are able to evaluate its per-
formance in social-choice-theoretic terms, measuring both
its Condorcet efficiency and the Borda score of the winner
at the end of the iteration. In Figure 2 we plot the progress
of these two parameters depending on the number of learning
iterations that is allowed. In order to interpret our findings,
we also plot the CE and Borda score of one-round plurality,
best-response iterative voting, 3-pragmatists iterative vot-
ing, STV, Copeland and Borda. We first present two voting
scenarios: one with a population of 9 voters and 7 candi-

dates, the other with 3 voters and 15 candidates. Utilities
of voters are generated using exponential utilities and the
results averaged over 10,000 elections.

First, let us consider the Borda score as evaluation criteria
in Figure 2. By design, the Borda voting rule is best. The
averaged rank of the winner over all the elections is about
1.7. The next best mechanisms are Copeland and STV. All
these voting rules require the knowledge of the complete or-
dinal preference of the agents. We observe that iterative
voting comes next, either in the standard mechanism or our
new mechanism with learning agent. Note that our learn-
ing agents are using less information as they only know the
current winner whereas standard iterative voting uses the
plurality score of all candidates. The level of performance is
still quite acceptable (the winner s averaged rank is about
1.94). Finally, we observe that our mechanism outperforms
one round plurality and 3-pragmatists.

Now, let us turn to Figures 2a and 2c in which we evaluate
the performances using Condorcet Efficiency (CE). Among
the voting rules we consider, only Copeland always elects
a Condorcet winner when it exists. For the other rules,
STV performs well, followed by iterative voting with learn-
ing agents. Figures 2a and 2c show a rapid growth of CE,
with a total increase of about 15-20% which stabilises at
around 1000/2000 learning iterations. The best results are
obtained for a high number of candidates and low number of
voters. Previous work showed that a 10% increase could be
obtained with restricted iterative voting in a similar setting
(25 candidates and 10 voters, with preferences generated us-
ing the urn model) [10], and comparable figures with 50 vot-
ers and 5 alternatives using the impartial culture generation
of preferences [17].

This performance is 5% better than Borda, and 3% better
than the standard iterative voting. Remember we use plu-
rality at each iteration. If a Condorcet winner exists (let us
call her cw) and currently candidate c is winning the elec-
tion, we know by definition that a majority of voters prefer
cw to c.

With standard iterative voting, only one voter at a time
can manipulate, and it will do so only if it changes the out-
come. If the winner c is winning by two votes or more,
standard iterative voting will not be able to elect the Con-
dorcet winner. In our framework, all voters can manipulate.
However, some learners may not notice they have a chance to
improve their utilities (because they voted for cw in the past
but cw never won, so the Q-value for cw is low), other may
decide to explore. In addition, voters do not know whether
a Condorcet winner exists. But the improvement we observe
shows that learners manage to coordinate their vote which
results in electing a Condorcet winner.

Observe that, while Borda and Copeland are obviously
scoring the maximum, respectively, in Borda score and CE,
the Borda rule can score worse than iterative learning in
terms of Condorcet efficiency, and a complex voting rule such
as STV can score worse under both parameters. Note that
we also conducted the same experiments under the impartial
culture assumption, obtaining similar results.

4.2 Scalability
One drawback of using learning agents is the number of it-
erations for convergence. Obviously, it is not reasonable for
a human agent to participate in such an iterated process. In
the results presented in this section, we ran the simulation

110

One Round Plurality Copeland Borda STV Iterative 3 Pragmatist

Iterative Best Response Iterative Learning Optimistic Greedy

0 50 100 150 200 250 300

Number of Iterations

0.7

0.75

0.8

0.85

0.9

0.95

1

C
o

n
d

o
rc

et
 E

ff
ic

ie
n

cy

(a) Condorcet efficiency, 9 voters, 7 candidates.

One Round Plurality Copeland Borda STV Iterative 3 Pragmatist

Iterative Best Response Iterative Learning Optimistic Greedy

0 50 100 150 200 250 300

Number of Iterations

35

35.5

36

36.5

37

37.5

38

38.5

39

B
o

rd
a

S
co

re
 o

f
W

in
n

er

(b) Borda score of winner, 9 voters, 7 candidates

One Round Plurality Copeland Borda STV Iterative 3 Pragmatist Iterative Best Response Iterative Learning

0 1 000 2 000 3 000 4 000 5 000 6 000 7 000 8 000 9 000 10 000

Number of Iterations

0.68

0.7

0.72

0.74

0.76

0.78

0.8

0.82

0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

C
o

n
d

o
rc

et
 E

ff
ic

ie
n

cy

(c) Condorcet efficiency, 3 voters, 15 candidates

One Round Plurality Copeland Borda STV Iterative 3 Pragmatist Iterative Best Response Iterative Learning

0 1 000 2 000 3 000 4 000 5 000 6 000 7 000 8 000 9 000 10 000

Number of Iterations

30

30.5

31

31.5

32

32.5

33

33.5

34

34.5

35

B
o

rd
a

S
co

re
 o

f
W

in
n

er

(d) Borda score of winner, 3 voters, 15 candidates

Figure 2: Performance of learning agents in terms of Condorcet efficiency and Borda score. For the CE experiment, the
number of profiles with a Condorcet winner is 7331 profiles for the first setting and 9359 profiles for the second setting.

with a smaller number of iterations (500) and we show that
the learners can still perform well.

In addition, the number of voters and the number of candi-
dates are two parameters that, when increased, could signif-
icantly deteriorate the performance of learning agents in it-
erative voting. Figure 3 shows instead that the deterioration
is comparable to many voting rules we considered. When we
keep the number of voters fixed and we add more candidates,
the Condorcet efficiency decreases at a similar rate as the
other voting rules (results are equivalent to the ones of STV,
and we beat iterative best response and 3-pragmatist with
a similar margin). In learning in games, adding additional
actions requires more iterations for learning well (and we
usually observe a slight drop in performance). With many
candidates, candidates low in the ranking will have utilities
that are negligible compared to the top candidates. Under
those circumstances, the loss in Condorcet efficiency is ac-
ceptable.

What is perhaps the most interesting result is that the
number of voters does not affect significantly the perfor-
mance of the learning agents. This is surprising since the
environment is less stationary and noise level is higher with
more agents trying to learn concurrently. Typically, it is
much more difficult to reach convergence with a high num-
ber of voters.

4.3 Social Welfare
The last criteria we want to consider are the measures of
the social welfare that aggregate the individual utility. We
considered the following two definitions:

Utilitarian social welfare : USW(c) =
∑
i∈N ui(c)

Egalitarian social welfare : ESW(c) = mini∈N ui(c)

Observe that if individual utilities are defined as the Borda
score, i.e., giving m − j points to the individual in j − th
position, then the USW of a candidate corresponds to its
Borda score.

The Borda score, Borda ratio and Condorcet Efficiency
measure the performance of the voting rules. On the other
hand, USW is a measure of efficiency, often used to study
the performance of a (cooperative) multiagent system. Re-
member that each learning agent is trying to maximise its
private utility function. Using plurality at each round, a
majority of agents will be satisfied, so we do not necessar-
ily expect to maximise USW, but we should observe that a
majority of agents improves its utility.

This is exactly what we observe in Figure 4a. Initially,
the performance of the learning agents is comparable with
the other voting rule but the USW quickly deteriorates. Re-
member that the utilities of each candidate (from the most
preferred to the least preferred) are 1, 1

2
, 1

4
, etc. If we look

111

One Round Plurality Copeland Borda STV Iterative 3 Pragmatist Iterative Best Response Iterative Learning

2 4 6 8 10 12 14 16 18 20 22 24 26 28

Number of Candidates

0.6

0.62

0.64

0.66

0.68

0.7

0.72

0.74

0.76

0.78

0.8

0.82

0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

C
o

n
d

o
rc

et
 E

ff
ic

ie
n

cy

(a) Condorcet efficiency, 9 voters, varying candidates

One Round Plurality Copeland Borda STV Iterative 3 Pragmatist Iterative Best Response Iterative Learning

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

Number of Voters

0.7

0.72

0.74

0.76

0.78

0.8

0.82

0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

C
o

n
d

o
rc

et
 E

ff
ic

ie
n

cy

(b) Condorcet efficiency, 7 candidates, varying voters

One Round Plurality Copeland Borda STV Iterative 3 Pragmatist Iterative Best Response Iterative Learning

2 4 6 8 10 12 14 16 18 20 22 24 26 28

Number of Candidates

0.86

0.87

0.88

0.89

0.9

0.91

0.92

0.93

0.94

0.95

0.96

0.97

0.98

0.99

1

B
o

rd
a

S
co

re
 R

at
io

 o
f

W
in

n
er

 t
o

 M
ax

 B
o

rd
a

(c) Borda score ratio over max Borda, 9 voters, varying candidates

One Round Plurality Copeland Borda STV Iterative 3 Pragmatist Iterative Best Response Iterative Learning

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

Number of Voters

0.9

0.905

0.91

0.915

0.92

0.925

0.93

0.935

0.94

0.945

0.95

0.955

0.96

0.965

0.97

0.975

0.98

0.985

0.99

0.995

1

B
o

rd
a

S
co

re
 R

at
io

 o
f

W
in

n
er

 t
o

 M
ax

 B
o

rd
a

(d) Borda score ratio over max Borda, 7 candidates, varying voters

Figure 3: Scalability of the performance of iterated voting with learning agents at 500 iterations, increasing candidates and
voters.

at the distribution of utilities, we have more very high values
initially (but less than a majority) and at convergence, we
have a majority of middle or high utility values. The overall
sum decreases over time, but more agents are happier. This
is coherent with the results of Figure 4b where we study the
egalitarian social welfare (ESW) which is the utility of the
poorest voter. We observe that initially, ESW starts pretty
low and raises with the number of iterations. Using that cri-
terion, iterative voting with learning agents is third behind
the Borda rule and Copeland.

Our method seems to perform poorly in terms of USW,
although this should not be interpreted as a negative result.
Note that the second worse voting rule is the Borda rule
for the same reason. We also ran experiments with Borda
utilities, obtaining graphs that are similar to Figure 2b or 2d
where we observe an increasing social welfare.

5. CONCLUSIONS AND FUTURE WORK
Motivated by the emergent works on iterative voting, in this
paper we want to use the learning capabilities for making
good collective decisions. Voting theory tells us that agents
always have incentives to manipulate. The idea of iterative
voting is then to use a simple voting rule such as plurality,
and ask each voter one at a time whether she wants to change

her ballot to obtain a preferred winner in the next round.
In this paper we address a weakness of existing models of

iterative voting: it is not realistic that voters change their
ballot one at a time. In our model we allow all agents to
change their ballot at the same time if they wish to do so. In
order to avoid a completely chaotic process, we use learning
agents as a mean to learn a good compromise. We showed
that using a simple learning algorithm with a scarce infor-
mation (only the winner of the current election), the perfor-
mance of winning candidates are quite good. We evaluate
the winner of the iterative process using extensive simula-
tions both in terms of Borda score and of Condorcet effi-
ciency against various voting rules, and we showed that we
obtain reasonable performances from around 300 iterations.
While this is of course too large for any human to use this
method, it is manageable for artificial agents.

We leave it for future work to use more sophisticated
learning mechanisms for decreasing the number of iterations
to obtain a reasonable performance, and to explore settings
in which more information is available to the agents in order
to allow them to take the context into account. A further
open challenge is to determine whether using iterative voting
with learning agents can be efficient in terms of communi-
cation complexity.

112

One Round Plurality Copeland Borda STV Iterative 3 Pragmatist Iterative Best Response Iterative Learning

0 1 000 2 000 3 000 4 000 5 000 6 000 7 000 8 000 9 000 10 000

Number of Iterations

0.488

0.49

0.492

0.494

0.496

0.498

0.5

0.502

0.504

0.506

0.508

0.51

0.512

0.514

0.516

0.518

0.52

0.522
U

ti
lit

ar
ia

n
 S

o
ci

al
 W

el
fa

re

(a) USW, 9 voters, 7 candidates, average over 10000 runs

One Round Plurality Copeland Borda STV Iterative 3 Pragmatist Iterative Best Response Iterative Learning

0 1 000 2 000 3 000 4 000 5 000 6 000 7 000 8 000 9 000 10 000

Number of Iterations

0.037

0.038

0.039

0.04

0.041

0.042

0.043

0.044

0.045

0.046

0.047

0.048

0.049

0.05

0.051

0.052

0.053

0.054

0.055

0.056

0.057

E
g

al
it

ar
ia

n
 S

o
ci

al
 W

el
fa

re

(b) ESW, 9 voters, 7 candidates, average over 10000 runs

Figure 4: Performance of learning agents with respect to utilitarian and egalitarian social welfare.

REFERENCES
[1] A. Agogino and K. Tumer. A multiagent approach to

managing air traffic flow. Autonomous Agents and
Multi-Agent Systems, 24(1):1–25, 2012.

[2] P. Auer, N. Cesa-Bianchi, and P. Fischer. Finite-time
analysis of the multiarmed bandit problem. Machine
Learning, 47(2-3):235–256, 2002.

[3] S. Berg. Paradox of voting under an urn model: The
effect of homogeneity. Public Choice, 47(2):377–387,
1985.

[4] M. Bowling and M. Veloso. Multiagent learning using
a variable learning rate. Artificial Intelligence,
136(2):215–250, 2002.

[5] S. J. Brams and P. C. Fishburn. Voting procedures. In
K. Arrow, A. Sen, and K. Suzumura, editors,
Handbook of Social Choice and Welfare. Elsevier, 2002.

[6] C. Claus and C. Boutilier. The dynamics of
reinforcement learning in cooperative multiagent
systems. In Proceedings of the Fifteenth National
Conference on Artificial Intelligence, AAAI ’98, pages
746–752, Menlo Park, CA, USA, 1998. American
Association for Artificial Intelligence.

[7] Y. Desmedt and E. Elkind. Equilibria of plurality
voting with abstentions. In Proceedings of EC-2010,
2010.

[8] A. Gibbard. Manipulation of voting schemes: A
general result. Econometrica, 41(4):587–601, 1973.

[9] U. Grandi, D. Grossi, and P. Turrini. Equilibrium
refinement through negotiation in binary voting. In
Proceedings of IJCAI-2015, 2015.

[10] U. Grandi, A. Loreggia, F. Rossi, K. B. Venable, and
T. Walsh. Restricted manipulation in iterative voting:
Condorcet efficiency and Borda score. In Proceeding of
the 3rd International Conference on Algorithmic
Decision Theory (ADT-2013), 2013.

[11] O. Lev and J. S. Rosenschein. Convergence of iterative
voting. In Proceedings of the 11th International
Conference on Autonomous Agents and Multiagent
Systems (AAMAS-2012), 2012.

[12] R. Meir, O. Lev, and J. S. Rosenschein. A
local-dominance theory of voting equilibria. In

Proceedings of the Fifteenth ACM Conference on
Economics and Computation (EC-2014), 2014.

[13] R. Meir, M. Polukarov, J. S. Rosenschein, and N. R.
Jennings. Convergence to equilibria in plurality
voting. In Proceedings of the Twenty-fourth conference
on Artificial Intelligence (AAAI-2010), 2010.

[14] S. Obraztsova, E. Markakis, M. Polukarov,
Z. Rabinovich, and N. R. Jennings. On the
convergence of iterative voting: How restrictive should
restricted dynamics be? In Proceedings of the
Twenty-Ninth AAAI Conference on Artificial
Intelligence, (AAAI-2015), 2015.

[15] S. Obraztsova, E. Markakis, and D. R. M. Thompson.
Plurality voting with truth-biased agents. In
Proceedings of SAGT-2013, 2013.

[16] Z. Rabinovich, S. Obraztsova, O. Lev, E. Markakis,
and J. S. Rosenschein. Analysis of equilibria in
iterative voting schemes. In Proceedings of the
Twenty-Ninth AAAI Conference on Artificial
Intelligence, (AAAI-2015), 2015.

[17] A. Reijngoud and U. Endriss. Voter response to
iterated poll information. In Proceedings of the 11th
International Joint Conference on Autonomous Agents
and Multiagent Systems (AAMAS-2012), June 2012.

[18] M. A. Satterthwaite. Strategy-proofness and Arrow’s
conditions: Existence and correspondence theorems
for voting procedures and social welfare functions.
Journal of Economic Theory, 10(2):187 – 217, 1975.

[19] Y. Shoham, R. Powers, and T. Grenager. If
multi-agent learning is the answer, what is the
question? Artificial Intelligence, 171(7):365 – 377,
2007.

[20] R. Sutton and A. Barto. Introduction to
Reinforcement Learning. MIT Press, 1998.

[21] L. Tran-Thanh, A. Chapman, E. Munoz de Cote,
A. Rogers, and N. R. Jennings. epsilon-first policies
for budget-limited multi-armed bandits. In M. Fox and
D. Poole, editors, Proceedings of the Twenty-Fourth
AAAI Conference on Artificial Intelligence (AAAI
2010), pages 1211–1216. AAAI Press, 2010.

113

Mobility effects on the evolution of co-operation in
emotional robotic agents

Joe Collenette, Katie Atkinson, Daniel Bloembergen, Karl Tuyls
Department Of Computer Science

University Of Liverpool
j.m.collenette@liverpool.ac.uk

ABSTRACT
Simulating emotions within a group of agents has shown to
support co-operation, in the prisoner’s dilemma game [8].
Recent work on simulating these emotions in agents has fo-
cused on environments where the agents do not move, that
is, they are static and their neighbours are fixed. However
it has also been shown that when an agent is given the abil-
ity to move, then the type of the environment affects how
co-operation between agents evolves in the group of agents
[11]. In this paper, we will explore the effects on co-operation
when emotional agents are given the ability to move within
relatively small and structured environments.

We conclude that once mobility is introduced, different
strategies are successful than in static agents. The suc-
cessful strategies, regardless of environment type, respond
quickly to defection, while not immediately reciprocating co-
operation. The higher the density of the agents, the lower
payoff all agents achieve. The further an agent travels, the
higher its total payoff. The slower an agent is to copy an-
other agent by imitating its strategy, increases its average
payoff.

1. INTRODUCTION
It is well known in psychology that emotions in humans

affect decision making [13]. By simulating these emotions
within agents we can then show the evolution of co-operation
between agents within the prisoner’s dilemma game [7, 8].
The recent work in emotional agents and their co-operation
has focused on agents which do not have mobility.

Whilst we recognise that emotions have both psychologi-
cal and physiological grounds [5], we consider only the for-
mer in this paper. We will simulate the functional aspect of
emotions, to the effect that emotions can change the current
behaviour of the agents, such as anger driving a pacifist to
fight [6].

When an agent is given mobility, initial work has started
to explore the affect the environment type has on decision
making when playing the prisoner’s dilemma game [11]. By
adding mobility to emotional agents, it will allow us to exam-
ine whether the environment structure has the same effects
as it does on non-emotional agents. By placing our agents in
a mobile environment we are hoping to have a more accurate
description of the evolution of co-operation within simulated
emotional agents, and to see if we can observe similar effects
that the environment type has on decision making.

Our study addresses the following questions: Do these
simulated emotions effect how the environment affects deci-
sion making? Does the added mobility affect the simulated

emotions and the decision making in these agents? By an-
swering these questions we can understand how the evolu-
tion of co-operation is affected when these agents with simu-
lated emotions are placed in different types of environment.
We can also see the effects that the addition of mobility has
on the agents and so gain insight into the use of emotions in
situated robots.

To achieve this we will be using two different types of
environments, a regular environment and a small world en-
vironment. A regular environment is where the agents can
only move within a small range of the other agents around
them, so to play against agents on the other side of the map
would require moving a long distance to reach them. It is
regular as at all intersections there is the same number of
exits. The small world environment is similar to the regu-
lar but it contains shortcuts across for these agents to move
over to different parts of the map quickly.

In our environments we will be simulating e-puck robots,
which are small disc shaped robots [9]. To simulate the e-
pucks and the environment we will be using the player/stage
simulator [4]. This allows us to simulate the e-pucks’ move-
ment and sensors, the environment type, in addition to let-
ting us record the positions of each e-puck at any given time.

Isolating the effects that the environment has on decision
making in our agents, we can observe the differences between
mobile and fixed agents. This enables us to see what the
effects this has on the evolution of co-operation in societies
of agents.

2. BACKGROUND
The agents will be playing the prisoner’s dilemma game.

The prisoner’s dilemma is a game where two players have
the choice of either defecting or co-operating; choices are
made simultaneously. They then get a payoff depending on
the choices of both agents, the payoff matrix is shown in
Table 1. When our agents are playing the game they have
no knowledge of the payoff matrix or how many iterations of
the game they will be playing. We are using this particular
game as it has been shown that it can be used to explore
the evolution of co-operation [2, 12, 3].

When looking at the prisoner’s dilemma outcomes, it is in
the best interest of both players to both play co-operatively
since this would lead to the largest total payoff. However
there is an incentive to defect as this can lead to higher
individual payoffs. This then leads to a Nash equilibrium
of (DEFECT, DEFECT), which gives the worst outcome
for the group as a whole. This outcome shows the dilemma
of the game and it allows us to see if co-operation between

114

Table 1: Prisoner’s Dilemma Payoff Matrix
CO-OP DEFECT

CO-OP 3,3 0,5
DEFECT 5,0 1,1

Table 2: Emotional Characteristics
Anger

Threshold
Gratitude
Threshold

Character

1 1 Responsive
1 2 Active
1 3 Distrustful
2 1 Accepting
2 2 Impartial
2 3 Non-Accepting
3 1 Trustful
3 2 Passive
3 3 Stubborn

agents can flourish.
The simulated emotions we will be implementing are based

on the Ortony, Clore and Collins model of emotions, known
as the OCC model [10]. This was developed from psychol-
ogy research and has been used within the AI community
[1, 7] to simulate emotions within agents. The emotions we
will be modelling are anger, gratitude and admiration.

The OCC model provides 22 emotions that can be mod-
elled; they take the view that each action is a response from
the emotional makeup and that each emotion gives a dif-
ferent action to take. Since the OCC model describes the
actions that an emotion can lead to rather than how that
emotion is processed internally, this gives us a good platform
to implementing this in a computational setting.

Our implementation of these emotions is similar to previ-
ous work into the emotional agents [7]; this allows us to com-
pare the differences in mobility and environment structure
rather than implementation. Each emotion has a threshold,
when that threshold is reached it triggers a change in the
agents behaviour. When the anger threshold is reached the
agent changes its behaviour to defection, and when the grat-
itude threshold is reached the agent changes its behaviour
to co-operation. Admiration, when triggered will cause the
agent to take on the emotional characteristics of the agent
that triggered the admiration threshold.

There are a number of emotional characters which have
differing thresholds for these emotions. The full set of char-
acters is shown in Table 2. Admiration thresholds can be
rated as high (3), medium (2) or low (1). When any thresh-
old is reached the value of that emotion is then reset back
to 0.

An agent’s anger increases by one when its opponent de-
fects, gratitude increases when the opponent cooperates.
Admiration increases when the agent believes that its oppo-
nent is performing better than itself. The exact implemen-
tation details of the admiration emotion is discussed further
in Section 4.2.

Take for example the Active characteristic whose anger
and gratitude values are currently zero and is set to initially
co-operate. When this character receives a DEFECT from
its opponent then the anger value will increase by one. The
anger value is now at the anger threshold of one, the charac-

ter will then change from its initial co-operation to defection,
that is, in the next game against that same opponent, the
character will choose to defect against that opponent.

3. METHOD
The agents will be simulated in an environment and given

a random walk behaviour with some basic obstacle avoidance
procedures. The prisoner’s dilemma game will be initiated
when two agents are within close proximity of each other
and both have line of sight of each other. They will then
continue their random walk behaviour. The two environ-
ments that we will be placing the mobile agents into include
a basic regular environment and a small world environment
as shown in Figure 1, with the black areas being the walls
and the white areas the floor. The arena size is 5 metres
by 5 metres and the e-puck has a diameter of 7 centimetres.
The agents will be placed in a random location initially.

The random walk behaviour is simplistic. When the agent
gets information about the world from its sensors it will first
check for obstacles. If the sensors on the left detect anything
they will stop and then turn to the right, and the reverse
for the sensors on the right. The right sensors are located at
15◦, 45◦and 90◦from the direction the e-puck is facing, and
the reverse for the left sensors.

To place each agent into the environment, we do the fol-
lowing:

1. Calculate how many of each agent types we need from
the given percentage.

2. Create each agent and place into the list.
3. Shuffle the list of agents.
4. Calculate the number of defectors from the given per-

centage, D = the number of initial defectors.
5. Assign the top D of the list to defect, and the rest to

co-operation.
6. Shuffle the list of agents.
7. Calculate the number of high admiration threshold

agents, H = the number of high threshold agents.
8. Calculate the number of medium admiration threshold

agents, M = the number of medium threshold agents.
9. Set the top H agents in the list to have the high ad-

miration threshold.
10. Set from H+1 to H+M in the list to have the medium

admiration threshold.
11. Set the rest the agents to low admiration threshold.
12. Shuffle the list.

This ensures that we have the correct number of agent
types and that initial moves and admiration thresholds are
distributed randomly to each agent.

To ensure that we have placed each agent randomly, we
use the list as created above, pull each agent off the top
of the list and assign it a place in the environment though
randomly generated X and Y positions. The randomly gen-
erated location is checked to make sure that it is not on any
walls or a previously allocated positions, it if it is, then we
generate a new random location.

When observing the environment and no obstacle is de-
tected then the agent will move forwards with a random turn
speed between no turning and the maximum turn speed for
left or right, while moving forward. Since the rate in which
the simulated e-puck receives data is around every second
then this gives a random movement around the environment.

115

Figure 1: Environments to be used. The regular
environment is on the left and the small world envi-
ronment is on the right.

Each agent placement will be randomized to prevent pock-
ets of identical agents, which cannot be broken down as they
will use each other to prevent replications happening in their
group.

In regards to the iterated prisoner’s dilemma game that
they will be playing, the payoffs can be seen in Table 1.
The agents have no knowledge of the payoff matrix or the
number of games to be played, they will purely use their
own strategies to decide whether to co-operate or defect.

In addition the agent has no knowledge of the strategies
of its neighbours, but the emotions it has apply specifically
to the agent it is playing against. That is the agent can
differentiate between players, but has no knowledge of them.
The agents also do not know about the environment they are
placed in. They will only use their random walk behaviour
to navigate around the environment.

4. EXPERIMENTS

4.1 Validation
The aim of this experiment is to show that our agents

which move have the same emotional response and outcomes
as the agents which do not move as in [8]. That is for, each
emotional character they will choose the same response after
receiving the same input. In this experiment we will only be
using the emotions gratitude and anger, as these were the
emotions used in original experiment [7]. In these environ-
ments we will be using two types of agent, one which is an
emotional agent and the other being a set strategy which
doesn’t use emotions. In addition our emotional agents will
be set to co-operate initially.

These non-emotional agents have the same knowledge of
the world as the emotional agents. They have the same ran-
dom walk behaviour and the same limited knowledge about
their neighbours.

The strategies that the emotional agent will be played
against are traditional ones from Axelrod’s tournament and
include:

Mendacious Always defects
Veracious Always cooperates
Random Equal chance of defection or co-operation
Tit-for-tat Initially co-operate then play the opponent’s

last move
Joss Tit-for-tat with a 10% chance of defection
Tester Defect on round n, if the opponent defects play tit-

for-tat until the end of the game otherwise cooperate
until round n+ 2 then repeat from n+ 3

For each emotional character as shown in Table 2, we will
perform 10 runs against each strategy in turn. A run con-

sists of simulating the mobile agents until 200 rounds of the
prisoner’s dilemma game have been completed.

In this experiment there are only two agents. By letting
the agents run until the same amount of rounds have been
completed as in the previous experiment, this then means
that they have played the same amount of games against
the same opponent as the agents which do not move. This
should make the results identical, allowing for some slight
variation with the strategies that use randomness. If the
results are the same then it shows that our emotional agents
behave in the same manner as emotional agents which do not
move in [7].

4.2 Main Experiment
This experiment aims to highlight the differences and sim-

ilarities between emotional agents that move and ones that
don’t, as well as showing what differences the environment
type has on the outcomes. In addition to the anger and grat-
itude emotions we will be including the admiration emotion.

The admiration threshold in [7] increases when an agent
compares its total payoff against each of its neighbours ev-
ery five games. For our agents the neighbours are not as
well defined because they will be moving constantly which
changes who they are near to at a particular time. We will
instead use the following to determine if admiration of an
opponent has been triggered.

A mobile agent will complete five games of the prisoner’s
dilemma. After this the mobile agent will request the aver-
age payoff per game of its next opponent, before the game
has started and compare the value to its own average pay-
off. Whoever has a higher average will gain the admiration
point.

We are using average payoff rather than total payoff which
was used in the original experiments because we cannot be
sure that each mobile agent has engaged in the same num-
ber of games as its opponent. When the admiration thresh-
old has been reached the agent will then take on the emo-
tional characteristics of the agent that triggered the thresh-
old which may be itself. Then the admiration of all agents is
cleared, finally the agent plays the game with that opponent.

As per [7], there will be 14 scenarios that will be car-
ried out. In each scenario there will be a number of ini-
tial defectors and cooperators, and number of agents with
high, medium or low admiration thresholds. The first 5
have identical admiration threshold distributions, but have
varying percentages of initial actions. This is to show how
the makeup of initial actions can affect the evolution of co-
operation. The remaining scenarios have varying admiration
thresholds but identical distributions of initial actions, this
will show us how differing distributions of admiration can
affect co-operation. For a break down of each scenario see
Table 3.

For each of these scenarios there will be a number of sub-
scenarios which relate to the number of mobile agents there
will be. The number of simulated robots will range from
9 to 144, with each emotional character being represented
equally in each sub-scenario. They are represented equally
so that when looking to see which emotional characteristic
is dominant, we can say that the reason for the dominance
is not because of a larger representation of the characteristic
but due to the effects we are exploring. For the breakdown
of the sub-scenarios that are used in combination with the
scenarios see Table 4. We will then run each scenario and

116

Table 3: Experiment 2 scenarios
Admiration %

Scenario
Initial

Defector %
Initial

Co-operator %
High Medium Low

1 90 10 34 34 32
2 70 30 34 34 32
3 50 50 34 34 32
4 30 70 34 34 32
5 10 90 34 34 32
6 50 50 50 25 25
7 50 50 70 15 15
8 50 50 90 5 5
9 50 50 25 50 25
10 50 50 15 70 15
11 50 50 5 90 5
12 50 50 25 25 50
13 50 50 15 15 70
14 50 50 5 5 90

Table 4: Sub-scenarios

Sub-scenario No. of agents
No. of individual

emotional
characteristics

1 - Very low density 9 1
2 - Low density 36 4

3 - Medium density 72 8
4 - High density 144 16

sub-scenario combination ten times to gather a strong set of
data to compare to the static agents. Each run will last ten
minutes so that sufficient replication can take place.

The data we will be gathering during our experiments
includes:

• Positional data of each agent, for every time it receives
information about the world. This is usually every
second.
• Each game that takes place with, who played the game,

what time it occurred and what actions they chose.
Including their total individual payoffs after the game
takes place.
• The total number of games each agent played, the dis-

tance they have travelled and their final payoffs.
• How many of each emotional characteristic is repre-

sented at the end of the games.

Each scenario will be run first in the regular environment
and then in the small world environment. This allows us to
compare our results in each environment, noting if and how
our emotional characters are affected by the change in en-
vironments. We can then show whether our simulated emo-
tional agents are affected by environment types in a similar
fashion to [11].

5. RESULTS
This section reports on the results of the above experi-

ments. We will showing that our agents that move give the
same results from the same games played as the agents that
do not move. Then we will be showing the most successful
characteristics, that is they were the most dominant charac-

teristic by being the most prevalent characteristic after the
ten minutes. We will then show what effects agent density,
distance travelled and environment type has on an agent’s
average payoffs.

5.1 Validation
First to ensure that our emotional agents which move are

reacting in the same way as the agents do not move, we
compare how our emotional agents react to non-emotional
agents. We compared out results to those in [8]1, Table
5 shows that our agents do react in the same way. From
the table we can see that against agents which do not have
randomness our mobile agents perform identically to their
non-moving counterparts. Against agents which have ran-
domness introduced, we can see that the average payoffs
between the two types of agent are close, and that all of
them have the same winners. This shows that our agents
that move react in the same way as the agents that do not.

5.2 Main

5.2.1 Effects of initial actions
Figure 2 shows that the higher the percentage of defec-

tors the lower the average score from each game an agent
can expect to receive. This is an intuitive result as the more
people that are co-operating the higher the chance of a (CO-
OP, CO-OP) being achieved which raises the average. If the
majority of games end in a (DEFECT, DEFECT) then this
gives an average closer to one. The differences in environ-
ment type will be explained in Section 5.2.5

5.2.2 Successful Characteristics
We will compare which emotional characteristic is the

most prevalent in our arenas and compare them to the preva-
lent character for the agents that do move which is character
Trustful [7].

In Figures 3 and 4, we can see that in contrast to the static
agents the most successful agent was the Non-Accepting
agent, with Active and Distrustful not far behind. A sim-
ilar contrast can be found in Figure 4 where Active is the

1Characters Responsive and Trustful are referred to as E1
and E7 respectively in [7].

117

Table 5: Comparison of average individual payoffs of initially co-operative emotional agents which move and
those that do not move against non-emotional strategies

Character Responsive Static Responsive Mobile Trustful Static Trustful Mobile
Mendacious 204, 199 204, 199 212, 197 212, 197
Veracious 600, 600 600, 600 600, 600 600, 600
Random 451, 449 459.4, 457.4 630.4, 372.4 618.6, 367.4

Tit-for-Tat 600, 600 600, 600 600, 600 600, 600
Tester 533, 533 533, 533 668, 443 668, 443
Joss 233.4, 228.4 256.3, 251.3 523.4, 449.4 531.2, 467.2

1 2 3 4 5
1

1.5

2

2.5

3

Scenario Number

A
v
er

a
g
e

p
ay

o
ff

Regular Environment

Small World Environment

Figure 2: Average payoff per agent for scenarios
with differing ratios of initial actions with standard
deviations

R
es

p
o
n
si

v
e

A
ct

iv
e

D
is

tr
u
st

fu
l

A
cc

ep
ti

n
g

Im
p
a
rt

ia
l

N
o
n
-A

cc
ep

ti
n
g

T
ru

st
fu

l

P
a
ss

iv
e

S
tu

b
b

o
rn

190

200

210

220

N
o
.

o
f

ti
m

es
w

o
n

Figure 3: Dominant characteristic across all scenar-
ios in a regular environment

R
es

p
o
n
si

v
e

A
ct

iv
e

D
is

tr
u
st

fu
l

A
cc

ep
ti

n
g

Im
p
a
rt

ia
l

N
o
n
-A

cc
ep

ti
n
g

T
ru

st
fu

l

P
a
ss

iv
e

S
tu

b
b

o
rn

225

230

235

240

245

N
o
.

o
f

ti
m

es
w

o
n

Figure 4: Dominant characteristic across all scenar-
ios in a small world environment

5

10

15

20

N
o
.

o
f

ti
m

es
w

o
n

No. Won

R
es

p
o
n
si

v
e

A
ct

iv
e

D
is

tr
u
st

fu
l

A
cc

ep
ti

n
g

Im
p
a
rt

ia
l

N
o
n
-A

cc
ep

ti
n
g

T
ru

st
fu

l

P
a
ss

iv
e

S
tu

b
b

o
rn

1.8

2

2.2

2.4

A
v
er

a
g
e

P
ay

o
ff

No. Won

Average

Figure 5: Average payoff with standard deviation
against Dominant characteristic in a small world en-
vironment with a high density of agents

118

most successful characteristic with Distrustful again not far
behind. The reasoning behind Trustfuls failure is that as
it takes a long time to switch to defection, it does not end
up punishing defectors since there is a chance that the oppo-
nent may not be played against again. Meaning that against
agents that are constantly changing Trustful is taken advan-
tage off to often without being able to punish that partic-
ular opponent. The differences in winning agents between
the environment types will be discussed in Section 5.2.5.

We can also see that the Supportive characteristic, does
not lend itself to being a dominant characteristic. The rea-
sons for this is that with it reciprocating co-operation im-
mediately it opens itself up to being taken advantage of,
which the other characteristics do. The characteristic Sup-
portive does not respond quickly to defection, it allows the
advantage the other characters are taking to taken multiple
times in a row. The reason this does not affect the Trustful
character as harshly is that by waiting even longer to punish
defection it allows co-operation to evolve between the two
agents raising both their payoffs.

In Figure 5 we have taken average scores across scenar-
ios 6 to 14 and the number of times each characteristic was
most dominant in those scenarios. We have excluded sce-
narios 1 to 5 because as shown in Figure 2 the variation in
the score is high which makes these figures less meaning-
ful. The figure shows how having the highest average score
makes that agent more likely to be dominant, but having
a lower average score does not mean that the characteristic
cannot dominate. This is because when a dominant char-
acter wins the majority of runs gets a higher score, such as
the Impartial characteristic does in this particular instance.
When Impartial is not dominant it performs particularly
badly bringing its average score down. This is also shown
by the higher standard deviation.

5.2.3 Effects of Density
The density of the robots, which was tested through the

sub-scenarios can be seen to have an affect on the perfor-
mance. Figures 6 and 7 show that the higher the density of
agents the lower the average payoff per game for each agent.
It has been shown that when the neighbours are fixed that
cycles of defection occur within these emotional agents [7],
with the higher densities the agents have less room to move.
This lack of movement makes the agent play against the
same group of agents as if they were fixed allowing these
cycles of defection to occur, the higher the density the more
these cycles appear in the environment. The differences in
the environment will be discussed in Section 5.2.5

In low densities of agents we can see that the most suc-
cessful agents are the ones which initially respond the same
as the majority of the group and compete in the most games.
This is because in low densities the number of games com-
pleted is very low, and by completing the most games you
have the chance for the highest payoff. If the majority are
defecting then there is not enough games for co-operation to
evolve between two agents, if the majority are co-operating
then there is not enough time for the advantage of defec-
tion to take affect, since the risk of getting a (DEFECT,
DEFECT) reduces the payoff significantly.

Figures 6 and 7 also show how the density affects the range
of potential average scores of an agent. When the density
is very low, then the number of games completed between
agents is also very low. For example an agent may only play

0 20 40 60 80 100 120 140
0

1

2

3

Number of agents

A
v
er

a
g
e

p
ay

o
ff

Figure 6: Average payoff per game for an agent in
differing agent densities in a regular environment
with standard deviation

0 20 40 60 80 100 120 140

0

1

2

Number of agents

A
v
er

a
g
e

p
ay

o
ff

Figure 7: Average payoff per game for an agent in
differing agent densities in a small world environ-
ment with standard deviation

119

High Medium Low

1.6

1.8

2

2.2

2.4

A
v
er

a
g
e

p
ay

o
ff

Sub-scenario 3 Sub-scenario 4

Figure 8: Average payoff per game for an agent
based on distance travelled in a small world envi-
ronment with standard deviation

two games over the run if the results are (DEFECT, CO-
OP) and (CO-OP, CO-OP) then the average of one agent
will be 4, but the other agent will have an average of 1.5.
This occurs less often as the density increases as the number
of games completed also increases. The average score will
better reflects the performance of the agents at higher den-
sities, this is shown by the decreasing standard deviations.

5.2.4 Effects of Distance Travelled
To see what effects movement distance has on the agents,

we first defined a high mover as an agent that travels for
more than 30 metres in a game, medium as over 15 but 30
or below and a low mover as 15 or below. Figure 8 show the
average payoff per agent is affected by the distance travelled.
We have excluded sub-scenario 1 and 2 due to the lack of low
movers. We can see from the figure that the more an agent
moves the higher its average payoff. The differences between
each distance threshold is more pronounced the fewer agents
there are in the environment. This is because agents that
move more do not get stuck in cycles of defection as often
because they are not stuck playing against the same agents.

5.2.5 Effects of Environment Type
After taking the fact that lower densities have large vari-

ations in them, we can see from Figures 2, 6 and 7 that
the average payoff in the small world environment is slightly
higher than the regular environment. The average payoff is
reducing as cycles of defection are occurring as agents are
playing against the same agent multiple times. The small
world environment has shortcuts throughout the environ-
ment which allows agents to break these cycles by moving
to another part of the environment, whereas in the regular
environment the groups of agents are larger without these
shortcuts which enable agents to move away from these de-
fection cycles bring the average payoff down more quickly.

The success of a particular agent is related to the environ-
ment type, as shown in Figures 3 and 4 the success of the
Non-Accepting agent is dependant on the type of environ-

High Medium Low

1.6

1.8

2

2.2

2.4

Majority of replication levels

A
v
er

a
g
e

p
ay

o
ff

Regular Environment

Small World Environment

Figure 9: Average payoff per game for an agent
based on distribution of admiration thresholds with
average deviation.

ment. We see that the Non-Accepting agent is successful in
a regular environment but not in a small world environment.
The reason it is successful in the regular environment is that
it takes advantage of the fact that agents can not move away
easily and that it will play against the same agents multi-
ple times. It is not unreasonable as it allows intermittent
defections to take place, ensuring that co-operation is not
broken. However it takes the advantage by not reciprocat-
ing co-operation until many games have been played.

When the Non-Accepting agent plays in the small world
environment the advantage it tries to take from the co-
operators in the group is reduced as the co-operators are
free to move to other areas of the environment. This leaves
the agent without the ability to create the co-operation cy-
cles to increase its payoff.

We can also see in these figures that there are agents that
do well in both types of environment, namely the Active
agent and the Distrustful agent. They are both quick to
switch to defection ensuring that they do not get taken ad-
vantage of. They both withhold reciprocating co-operation,
the Active agent does better as cycles of co-operation are
created more quickly.

The environment type also affects how quickly the agents
should choose to adapt their characteristics, as seen in Fig-
ure 9. From this figure you can see that in a small world
environment an agent should wait until more games have
been played before it changes its characteristics. This is due
to the fact that more games against different opponents can
have a effect which characteristic is doing best, so waiting
until a characteristic is clearly dominant is better for the
agent.

In a regular environment the effect is less pronounced but
there is a difference, the agent should either change its char-
acteristic as quickly as possible or wait until the dominant
characteristic is known.

120

6. CONCLUSIONS
These experiments have shown that the distance travelled,

the type of environment and the density of the agents all
have an effect on the success of agents. By travelling more
the agent can increase its payoff. An agent can also increase
its payoff by waiting for a dominant characteristic to show
and then copying that characteristic, rather than changing
its characteristics more often.

The type of environment effects which strategies can be
viable with the Non-Accepting agent being successful in a
regular environment but not the small world environment.
However there are strategies that are successful regardless
of the environment type, namely the Active characteristic.

We can come up with a general set of rules on how to
succeed when mobility is introduced regardless of the envi-
ronment type, the rules are:

• Follow the group initially
• Keep moving
• Punish defection quickly
• Wait to reciprocate co-operation, but not too long.
• If there is a more dominant strategy wait before copy-

ing it.

7. FUTURE WORK
Now that these experiments have been completed, we can

now further expand this body of work. We will show that
this work completed is applicable to the real world by im-
plementing this experiment on real world e-pucks. We will
also be including the addition of mood to our robots to see
how this can improve co-operation between agents. Mood
is distinct from emotions but is influenced from the same
input, we will be using a positive or negative mood which
will effect how the agent responds to new agents. The main
difference between emotions and mood is that emotions are
short-term and mood is long term feelings.

In addition we will also be looking into how to improve co-
operation through influencing the decision making of select
agents. By selecting an agent through a given criteria we can
force that particular agent to either co-operate or defect, and
we will be able to see how this affects co-operation.

We will also be testing our strategy that we have devel-
oped through our results to validate this strategies in these
scenarios against emotional agents.

REFERENCES
[1] Elisabeth André, Martin Klesen, Patrick Gebhard,

Steve Allen, and Thomas Rist. Integrating models of
personality and emotions into lifelike characters. In
Ana Paiva, editor, Affective Interactions, volume 1814
of LNCS, pages 150–165. Springer, 2000.

[2] Robert Axelrod and William Donald Hamilton. The
evolution of cooperation. Science,
211(4489):1390–1396, 1981.

[3] Daan Bloembergen, Bijan Ranjbar-Sahraei, Haitham
Bou Ammar, Karl Tuyls, and Gerhard Weiss.
Influencing social networks: An optimal control study.
In Proc of ECAI‘14, pages 105–110, 2014.

[4] Brian Gerkey, Richard T Vaughan, and Andrew
Howard. The player/stage project: Tools for
multi-robot and distributed sensor systems. In Proc.

of the International Conference on Advanced Robotics,
pages 317–323, 2003.

[5] Dacher Keltner and James J. Gross. Functional
accounts of emotions. Cognition & Emotion,
13(5):467–480, 1999.

[6] Robert W. Levenson. Human emotion: A functional
view. The nature of emotion: Fundamental questions,
1:123–126, 1994.

[7] Martyn Lloyd-Kelly, Katie Atkinson, and Trevor
Bench-Capon. Developing co-operation through
simulated emotional behaviour. In 13th International
Workshop on Multi-Agent Based Simulation, 2012.

[8] Martyn Lloyd-Kelly, Katie Atkinson, and Trevor
Bench-Capon. Emotion as an enabler of co-operation.
In ICAART (2), pages 164–169, 2012.

[9] Francesco Mondada, Michael Bonani, Xavier Raemy,
James Pugh, Christopher Cianci, Adam Klaptocz,
Stephane Magnenat, Jean-Christophe Zufferey, Dario
Floreano, and Alcherio Martinoli. The e-puck, a robot
designed for education in engineering. In Proceedings
of the 9th conference on autonomous robot systems
and competitions, pages 59–65. IPCB: Instituto
Politécnico de Castelo Branco, 2009.

[10] Andrew Ortony, Gerald L Clore, and Allan Collins.
The cognitive structure of emotions. Cambridge
university press, 1990.

[11] Bijan Ranjbar-Sahraei, Irme M. Groothuis, Karl
Tuyls, and Gerhard Weiss. Valuation of cooperation
and defection in small-world networks: A behavioral
robotic approach. In Proc of BNAIC 2014, 2014.

[12] Francisco C. Santos, Marta D. Santos, and Jorge M.
Pacheco. Social diversity promotes the emergence of
cooperation in public goods games. Nature,
454(7201):213–216, 2008.

[13] Norbert Schwarz. Emotion, cognition, and decision
making. Cognition and Emotion, 14(4):433–440, 2000.

121

TLDA: Transfer Learning via Domain Adaptation in
Continuous Reinforcement Learning Domains

Farzaneh Shoeleh
Faculty of Electrical and Computer Engineering

University of Tehran
Tehran, Iran

f.shoeleh@ut.ac.ir

Masoud Asadpour
Faculty of Electrical and Computer Engineering

University of Tehran
Tehran, Iran

asadpour@ut.ac.ir

ABSTRACT
Although Reinforcement Learning (RL) is known as an ef-
fective Machine Learning technique, it might perform poorly
in complex problems, especially real world problems, leading
to slow rate convergence. Since RL algorithms suffer from
the curse of dimensionality in continuous domains, general-
ization is the most challenging issue in this area. Transfer
Learning (TL) is a successful technique to overcome such
problem and results in big improvements in agent learning
performance by providing generalization not only within a
task, but also across different but related tasks. The key is-
sue in TL is how to use the knowledge acquired while learn-
ing different but related task in past. Domain adaptation is
a novel paradigm that seeks to address this concern. In this
paper, we propose a novel Transfer Learning via Domain
Adaptation (TLDA) approach in continuous RL problems.
TLDA discovers and learns skills as high-level knowledge
form source task and then use domain adaptation technique
to help agent to discover state-action mapping as a relation
between source and target task. With such mapping, TLDA
can incorporate source skills in order to speed up learning
on a new target task. The experimental results indicate the
effectiveness of the proposed method in dealing with contin-
uous reinforcement learning problems.

Categories and Subject Descriptors
I.2.6 [Artificial Intelligence]: Learning

General Terms
Transfer Learning, Reinforcement Learning

Keywords
Reinforcement Learning, Transfer Learning, Domain Adap-
tation, Option Learning

CCS Concepts
•Computer systems organization → Embedded sys-
tems; Redundancy; Robotics; •Networks → Network reli-
ability;

1. INTRODUCTION
Reinforcement Learning(RL) is a commonly used and ef-

fective machine learning technique, but the potential of RL
techniques is limited when faced with complex problems,
especially challenging real world problems with large state-
action spaces. RL allows autonomous agents to learn and

improve their performance through the obtained experiences
while interacting with an unknown environment. The appli-
cability of RL methods in complex environments is restricted
by the required learning time and the curse of dimensional-
ity, resulting in reduced performance and late convergence.
Recently, a vast number of RL studies have been carried out
to overcome this problem. According to the literature [27,
11, 22], it is believed that state abstraction methods and
hierarchical architectures can improve the required learn-
ing time and lessen the hampering effect of the curse of
dimensionality. While significant progress has been made
to improve learning in a single task, the idea of transfer
learning has only recently been applied to RL tasks. The
insight behind transfer learning (TL) is that generalization
may occur not only within tasks, but also across tasks. So,
transfer learning has recently gained popularity due to the
development of algorithms that can successfully generalize
information across multiple tasks. In fact, transfer learning
is the answer to ”How to apply the learned knowledge from
one task, called the source task, to the related but different
task, called the target task?”.

Recently, transfer learning has attracted many researchers
in the fields of artificial intelligence and machine learning
[25, 8, 19]. In almost all machine learning and data mining
algorithms, the main assumption is that both train and test
samples are driven from not only the same feature space, but
also the same distribution. However, this assumption does
not hold in many problems [25]. Hence, researchers have
focused on using the acquired knowledge from the previous
tasks, which are related to but different from the current
task, in order to improve the efficiency of learning methods
in terms of performance and learning time. Generally, the
transferred knowledge within tasks can be categorized into
two groups: low-level and high-level knowledge. Note that
the source and target tasks must be more related, while
using low level knowledge compared to using higher level
knowledge [29, 15]. Thereby, techniques based on extraction
and transfer of high-level knowledge are more advantageous.

The challenging question in transfer learning in RL do-
mains is ”Which kind of knowledge is suitable to be con-
sidered for transferring?” To answer this question, there are
two aspects to be considered: firstly, facilitating the learning
process in both source and target domains. Secondly, extrac-
tion and transfer of high-level knowledge which is advanta-
geous, especially between very dissimilar tasks. Considering
these aspects, extraction and learning of skills as high-level
knowledge can prove beneficial to RL-based transfer learn-
ing methods. In RL, skills can be formulated using Option

122

framework [27]. Option framework is one of the well-defined
temporal abstraction frameworks extending RL algorithms
from primitive actions to time extended activities which are
named abstract actions or skills in the literature. On the
other hand, one of the most successful techniques in hierar-
chical reinforcement learning (HRL) to speed-up the learn-
ing is temporal abstraction [27], i.e. instead of choosing an
action in each step, the agent chooses a time extended ac-
tivity that is performed in more than one time step.

The other challenging question arises when the state-action
space in source and target are different.In general, Transfer
learning algorithms can be divided into Heterogeneous and
Homogeneous TL by considering whether the feature spaces
between source and target domains are the same or not.
This paper aims to propose a novel skill based heteroge-
neous transfer learning in continuous RL problems. So, our
second challenging question is ”How the source and target
tasks are related?”. To answer this question in this paper,
we utilize domain adaptation techniques to find the intertask
mappings between source and target domains.

In this paper, we propose a novel heterogeneous Transfer
Learning method via Domain Adaptation ,named TLDA,
to address the curse of dimensionality in continuous RL
domains by leveraging transfer learning techniques which
discovers related skills between the source and target tasks
and uses them to boost learning performance in target task.
The proposed skill based transfer learning (TLDA) method
has three steps: first, learning source task and extracting
abstract skills based on communities detected from con-
nectivity graph. Second, finding the state-action intertask
mappings between source and target domains, and then effi-
ciently transferring the skills using intertask mappings into
the target task and learning their value functions. The re-
sults from experiments demonstrate that the proposed method
is able to find the relation between tasks and consequently
transfer the obtained abstract skills effectively and improve
the performance of agent in target task.

The rest of this paper is organized as follows. Section 2
presents an overview of the related work. In Section 3, the
proposed transfer learning via domain adaptation approach
is described. Experiments and results are reported in Sec-
tion 4, and Section 5 contains the conclusion and direction
for future works.

2. RELATED WORK
Since the proposed method is a skill based transfer learn-

ing method which is applicable in continuous domain, this
section presents some of the related work in transfer learning
in RL context and contrasts it with the proposed approach.
For a broader review of Transfer Learning in RL domains
the reader may refer to the comprehensive surveys in [29,
30, 15].

Lazaric et. al [17, 16] demonstrate that source task in-
stances can be usefully transferred between tasks. After
learning the source task, the agent gathers some experi-
ences in the target task to be compared to instances from
the source task. Judging the distance and alignment, the
most similar source instances are transferred. Then, in the
target task, the agent uses a batch learning method for train-
ing with both source and target samples to achieve higher
reward and a jumpstart. The idea of transferring similar
regions among tasks was firstly proposed in [17]. In [17], the
similar regions are determined using the similarity between

samples in source and target, indeed using low-level knowl-
edge. In contrast, our proposed method tries to transfer
similar regions identified with high-level knowledge, namely
skills which is defined using a community detection algo-
rithm on the connectivity graph. Asadi et. al [4, 5] present
an agent that learns options and transfers them between dif-
ferent tasks. The agent tries to find sub-goals in the source
task by identifying states that are ”locally from a signifi-
cantly stronger attractor for state space trajectories”. Con-
sidering such sub-goals helps the agent define options. Like
this work, almost all the option-transfer methods consider
discrete Markov Decision Processes (MPDs), whereas here
we aim at proposing a transfer learning method which is
applicable to continuous RL domains. Moreover, in [4, 5]
source and target tasks differ only in the reward function,
whereas the proposed method would be applied to the source
and target tasks that differ in possible state transitions.

Although all option-based transfer learning algorithms share
the same structure, one of the critical steps is to identify
these options. As one of the first studies, McGovern et. al
[20] considered options based on the concept of bottleneck
state. The bottleneck state is a state which is often tra-
versed by the optimal policy of the source task. They show
that bottleneck states are critical to solve tasks in the same
MDP. In general, automatic skill or option discovery can be
divided into two main categories: graph based and frequency
based approaches. In the first category, the transition graph
is built and then the sub-goals are found using graph the-
ory analyses. The graph based approaches are different in
processing and analysis of such transition graph while find-
ing sub-goals. To name a few, the works in [28, 21, 22] use
centrality measure. In the former one, it is assumed that
the sub-goal states are more frequent in successful paths.
Thus, these approaches find sub-goals using the state visit
frequency [11, 12]. In addition, some works try to discover
skills incrementally while agent is interacting with environ-
ment [13, 14, 11]. Konidaris et. al proposed a method called
Skill Chaining in [11]. The Skill Chaining approach tries to
decompose a continuous problem into a chain of skills and
then uses option framework to learn skills. According to the
presented categories, our proposed method is a graph based
skill acquisition approach in learning a task.

Our proposed method would leverages domain adaptation
techniques to find the intertask mapping between source
and target tasks driven from different domains. So, most
closely related to this work are approaches that are able
to find an intertask mapping for pairs of tasks or try to
find the MDP similarities in order to have effective TL ap-
proach [9, 2].There has been some recent work on learning
such mappings. For example,[18] proposed a graph match-
ing based approach to find the similarities between state
and action variables in the two tasks. It is assumed that the
agent is provided a complete and correct transition model
for both tasks, whereas this assumption cannot be applied
in many problems. Soni et. al [26] treats the different pos-
sible state variable mappings as options in the target task
and use them to learn the target task faster. Similarly, this
work assumes that the action mapping is provided to the
agent and that the state variables can be grouped into task-
independent groups. Taylor, Whiteson, and Stone [31] pro-
posed a method to learn both the state variable mapping
and the action mapping by using classification. The authors
also leverage the assumption that the agent is provided state

123

variable groupings. However, there are currently less general
methods to learn an intertask mapping without requiring ei-
ther background knowledge. In [1], an approach is proposed
to automatically discover high-level features and use them
to transfer knowledge between agents without suffering from
an exponential explosion. Authors in [3] used sparse coding,
sparse projection, and sparse Gaussian processes to learn an
inter-task mapping between MDPs. In other related works,
Bocsi et. al in [6] and Ammar et. al in [1] use manifold align-
ment to assist in transfer. The primary differences with our
work are that a) the authors focus on transferring models
between different tasks, rather than high-level knowledge,
skills, and b) we are not aware of a robust and domain-
independent similarity metric for MDPs.

3. OUR PROPOSED METHOD
The aim of this paper is proposing an RL based agent

with an ability of inter-task mapping between state-action
spaces of source and target environments and transferring
the learned skills extracted from source task into target
task efficiently. Our proposed algorithm is named Trans-
fer Learning via Domain Adaptation, TLDA. TLDA utilizes
domain adaptation techniques in order to facilitate trans-
fer learning in continuous reinforcement learning domain,
especially between two domains with different state-action
spaces, by discovering a good feature representation across
these different but related domains. TLDA consists of three
main phases:

1. Learning Source Task

2. Finding Intertask Mappings

3. Transferring learned skills and Learning Target Task.

Figure 1 provides an overall picture of the main steps of
TLDA. In following, we describe it in more detail.

Phase 1. Learning Source Task
As the first step, it is obvious that agent should learn the
source task well. During this learning task, the experience
of the agent must be captured as a high level knowledge like
skills in order to be appropriately transferred.

In this phase, the agent’s experiences via interaction with
environment along with the problem domain properties are
captured as a graph named Connectivity Graph (CG). To
construct such graph, two graph models, namely Transi-
tion Graph (TG) and Distance Graph (DG), are considered.
Agent tries to build transition graph by gathering experi-
ences via interaction with environment. In each state the
agent chooses an action, executes it and proceeds to the
next state. For each transition between two states, an edge
is created between the corresponding nodes in the transition
graph. The constructed transition graph is a weighted di-
rected graph. The edges are created from a state to the next
state and the weight is updated according to the probability
of transitions which is measured by nss′/ns where nss′ is
the number of transitions from the state s to the next state
s′ , and ns is the number of visits of the state s. It must
be mentioned that since in continuous domain, agent may
never see the same state twice, here the transition graph is
built based on abstract states.

The problem domain properties would be captured through
distance graph. In distance graph, there is a node for each

visited state and nodes are connected to each other based
on their distance. Here, we use power-law graph where the
probability of existing a link between i and j, Pij is defined
as follows:

Pij =
1

1 + edij
(1)

where dij is the Euclidean distance between nodes i and
j. In order to obtain connectivity graph, we can combine
transition graph(TG) and distance graph(DG) as follows:

CG(wij) = αw ∗ TG(wij) + (1 − αw) ∗ DG(wij) (2)

The agent’s connectivity graph, gives information about
both its dynamic behavior and the environment’s dynam-
ics. If the communities of such graph are found, each com-
munity would present a region in the agent’s state space,
where states are accessible to each other through a limited
number of actions and with low cost. Hence, by commu-
nity detection the state space is divided into regions called
accessible regions. After partitioning the state space into
accessible regions, the learning problem converts to learning
the appropriate transitions between regions until reaching
the goal region. A region is called goal region if it contains
goal state and there is a small number of action steps be-
tween each non-goal state and the goal state in this region.
Upon finding the goal region, the goal state can be easily
reached through limited number of primitive actions in the
goal region.

Here, each detected community is considered as a skill for
the agent. A skill guides agent to live in the region of its cor-
responding community in order to enter the closest neighbor
region to the goal region. Identifying skills gets agent to face
with a new graph named skill graph in higher level. In skill
graph, nodes corresponds to the detected communities and
edges specify the relations between communities. Now, the
agent should learn how to optimally choose a sequence of
skills to reach the goal, and learn how to act in each skill.
In contrast, in lower level, agent should learn how to choose
sequence of primitive actions to finish the current skill and
successfully leave its corresponding region.

After autonomously discovering new skills, the agent uses
the option framework to learn each skill and thereby con-
struct its own high level skill hierarchy. Corresponding to
each skill, an option O is created and its termination con-
dition OT , reward function OR, and initiation set OI are
defined. To define an option’s termination condition OT , a
trigger function T is introduced over the state space S. It is
1 for states inside the option’s community region and zero
otherwise. To obtain the initiation set of an option I, we use
K-NN classifier where the positive samples are states within
the community’s region. Given an option reward function
OR, policy learning over such option can be viewed as just
another independent RL problem that must be solved by op-
tion’s function approximator. Here, the reward function of
an option is defined as the task’s reward function R plus an
option completion reward. The option completion reward
is considered as the value of the state where the option is
terminated. Therefore, such shaping reward encourages the
agent to terminate the option and also leads it to a better
neighbor option in skill graph which is closer to the goal.

Note that although the state space of the agent is par-
titioned into non-overlapping communities corresponding to
each option, the decision to execute an option is a part of the
agent’s overall learning process. So, at high-level, the agent

124

Figure 1: Overall Picture of our proposed learning framework named Transfer Learning via Domain Adaptation, TLDA, in
continuous reinforcement learning domain

must learn how to choose a sequence of skills to optimally
reach the goal. In contrast, at low-level, agent must learn
how to efficiently act for each selected skill via the option’s
function approximator.

All in all, the output of this phase is a set of learned skills
and a collection of source samples of the form < s, a, s′, r >.
The source samples are collected by agent through connec-
tivity graph construction phase while learning source task.

Phase 2. Finding Intertask Mappings
After learning the source task, the next step is determining
”How the two tasks with different state variables and actions
are related?”. To answer this question, TLDA method uses
two set of samples collected from source task, Ssource, and
target task, Starget. Here, a well known domain adaptation
algorithm named transfer component analysis, TCA, intro-
duced in [24] is used. By considering Ssource and Starget,
TCA tries to learn a set of common transfer components
underlying both source and target domains in a Reproduc-
ing Kernel Hilbert Space, RKHS, using maximum mean
miscrepancy, MMD, [10]. The difference in data distribu-
tion of the different domains, when projected onto the com-
mon latent subsapce, can be dramatically reduced and data
properties can be preserved. Let source domain data be
DS = (xS1, yS1), ..., (xSn1

, ySn1
) where xSi is the input and

ySi is the corresponding output. Similarly, let target domain
data be DT =(xT1, yT1), ... , (xTn2

, yTn2).

TCA assumes that P (XS) ̸= P (YS), but there exists a
transformation ϕ such that P (ϕ(XS)) ≃ P (ϕ(XT)). and
P (YS |ϕ(XS)) ≃ P (YT |ϕ(XT)). The key issue in TCA is
finding such transformation ϕ. Since, target domain data
have no accurate output, ϕ cannot be learned by directly
minimizing the distance between. Hence, TCA finds the
nonlinear mapping ϕ based on kernel feature extraction such
that satisfies two main objectives: 1) minimizing the dis-
tances between P (ϕ(XS)) and P (ϕ(XT)) 2) maximally pre-
serving the data properties XS and XT ,namely the data
variance as performed by Kernel based PCA. For a broader
review of how TCA can find such nonlinear mapping, the
reader may refer to the original paper of TCA in [24]. TCA

tries to solve following kernel learning problem

min
W

tr(W T KLKW) + µtr(W T W)

s.t. W T KHKW = Im

(3)

where µ > 0 is a tradeoff parameter and K consists Gram
matrices defined on source domain, target domain and cross-
domain data. L and H matrices are computed as follows:

Lij =





1
n2
1

if xi, xj ∈ XS

1
n2
2

if xi, xj ∈ XT

1
n1n2

otherwise

(4)

H = In1+n2 − (
1

n1 + n2
)1n1+n2 (5)

H is a centering matrix where 1n1+n2 ∈ R(n1+n2)×(n1+n2)

is with all 1’s, and In1+n2 ∈ R(n1+n2)×(n1+n2) is identity
matrix.

W transforms the empirical kernel map features to an m
leading to an m-dimensional space (m ≪ n1 + n2) and the
embedding of data in the latent space is W T K. As it is
shown in [24], by considering the Lagrangian of (3), this
optimization problem can be solve similar to kernel Fisher
discriminant analysis [23]. Hence, the solutions are the m
leading eigenvectors of (KLK + µI)−1KHK, where m ≪
n1 + n2 − 1.

To apply TCA algorithm on two set of samples gather-
ing from source task, Ssource, and target task, Starget, we
consider < s, a, s′, r > as X, the input data, and the com-
munity number or skill id in source task is considered as Y ,
the output data. TCA projects both source and target sam-
ples onto the latent space spanned by the transfer compo-
nents in RKHS. Indeed, TCA helps agent to identify which
source sample sS ∈ Dsource is similar to a given target sam-
ple sT ∈ Dtarget in obtained latent subspace and assign the
sS community number to sT ’s one. Having such cross do-
main sample similarity, it is possible to find the state space
mapping χS and action space mapping χA as following

χS = SS ∗ (ST)−1

χA = AS ∗ (AT)−1
(6)

125

where SS and ST are < s, s′ > tuples extracted from
Dsource and Dtarget respectively. Similarly, AS and AT are
action vectors < a > which is extracted form Dsource and
Dtarget tuples.

Phase 3. Transferring learned skills and Learn-
ing Target Task
The output of first phase is a set of learned skills obtained
from the source task and the output of second phase is state-
action space mappings χS and χA. we transfer skills learned
in source task into the target task and then apply state-
action mappings to use their function approximators. In
spite of the previous researches that have initiated new op-
tion policies using the past experiences, it is indicated in [11]
that these extra updates may be experimentally confound-
ing. Therefore, we would not directly add the transferred
skills to the agent’s action repertoire. These skills are firstly
considered as gestating skills which are allowed to have a
gestating period (e.g., 10 episodes), where they cannot be
selected for execution but their policies are updated using
off-policy learning. Each gestating skill finishing its ges-
tating period would be added to the agent’s action set as
a learned skill and assign appropriate initial values as its
value. The initial value of a new transferred skill is con-
sidered as the maximum of Q values of its border states
estimated during the gestating period.

4. EXPERIMENTAL RESULTS
We evaluate the performance of our proposed method,

namely TLDA, through several experiments. In the follow-
ing, we first introduce the test domain and then present the
experiments and evaluations on our approach for transfer
learning.

4.1 The PinBall Domain
The proposed method was assessed using a set of well-

known four dimensional continuous test domain for RL, Pin-
ball domain [11]. In this domain, the agent must learn how
to maneuver a small blue ball into a red hole. As the ball is
dynamic with drag coefficient, the state of agent is described
not only by the ball’s position, x and y, but also by its ve-
locity, ẋ and ẏ. Since obstacles cause the ball to bounce, the
agent may choose to use the obstacles to efficiently reach
the goal rather than avoiding them. Here, the agent has 5
primitive actions: adding or subtracting a small force to ẋ
and ẏ which endures a punishment of 5 per action, or leav-
ing the velocities unchanged which endures a punishment of
1. When agent reaches the goal state, it obtains a reward of
10,000.

Note that the pinball domain is an interesting test domain
for RL algorithms because of its dynamics aspect, sharp dis-
continuities and extended dynamics control characteristics.
These properties make this domain more difficult for the
learning agent than a simple navigation task. Here, To ex-
amine our proposed approach, we use a set of different pin-
ball problems which are different in the locations of obstacles
as illustrated in Figure 2.

4.2 Experimental Setting
In order to illustrate the effectiveness of our graph based

skill learning approach, we compare three learners: 1) a stan-
dard agent applying SARSA(λ) with linear function approx-
imation using Fourier basis [14] as a standard RL method,

(a) env1 (b) env2

Figure 2: Pinball domain instances with different locations
of obstacles used for our experiments. The environment with
lower index number is easier than the one with greater index
number because of both the number and the location of
obstacles.

2) an agent with the ability of option learning introduced
in [11], named Skill Chaining Learning (SCL) agent, 3) our
pure Graph based Skill Learning agent named GSL, with-
out using TL technique, and 4) an agent using skill based
transfer learning via domain adaptation (TLDA). Note that
only the last agent utilizes the transfer learning mechanism.
These agents are configured as: 500 Learning episodes, Learner
Fourier Order and Option Fourier Order are 4 and 3 respec-
tively, λ is 0.9 and α decrease adaptively [7]. It is worth
mentioning that like the standard agent, both SCL and GSL
agents use linear function approximation with Fourier basis.
Since each option covers a subspace of the whole problem
space, the Fourier order of option’s function approximator
is smaller than the agent’s function approximator. Note
that the first 10 episodes out of the total learning episodes
of GSL and TLDA agents are devoted to gather experiences
with random policy (ϵ−greedy with ϵ = 1) in order to con-
struct the connectivity graph and collect a set of samples
used in domain adaptation, respectively.

4.3 Experimental Results
In this section, we examine and appraise our skill based

transfer learning approach (TLDA). To do so, we consider
four transfer learning scenarios to transfer learned skills from
an environment as source task to a new environment as tar-
get task:

1. from env1 to 90◦ rotated env1: Heterogeneous TL
2. from env1 to -90◦ rotated env1: Heterogeneous TL
3. from env1 to env2: Homogeneous TL, adding obstacles
4. from env2 to env1: Homogeneous TL, omitting obsta-

cles
Figure 3 illustrates the performance of five agents in the

scenarios mentioned above. The results highlight the com-
petitiveness of our methods in terms of return to other se-
lected learners. Regarding to Figure 3, the performance of
standard algorithm SARSA(λ) attests that the pinball do-
main problems are too hard to be solved by the standard RL
algorithms and consequently HRL approach that benefits
from temporal abstraction would have better results. The
asymptotic performance of GSL, using connectivity graph
and Louvain algorithm, the outperforms of SCL method.
On the other hand, as demonstrated in Figure 3, the perfor-
mance of SCL at the beginning is better. This phenomenon
is because of the differences between building skill mecha-
nisms of SCL and GSL. As it is claimed in [11], since a useful

126

option lies on the solution path, the first option that is cre-
ated in SCL method is the one that consistently reaches the
goal state. So, SCL gradually recognizes and learns skills
from the goal to the start state during time. By contrast,
GSL identifies all skills altogether after constructing connec-
tivity graph and then learns them during time. Thus, once
the first skill is created, the SCL agent benefits it and starts
to learn its function approximator. However, in GSL, due
to creating all skills simultaneously and then learning them,
the agent has to make more effort to learn their function
approximators and consequently the performance of GSL
agents are less at beginning. So, GSL has worse perfor-
mance at beginning but once the skills are learned to some
extent, it overtakes SCL and achieves better performance at
the end. In addition, TLDA can improve the performance of
GSL agent by transferring the previously learned skills into
the new domain.

Figure 4 shows the estimated Q-value functions in source
and target tasks in mentioned scenarios during gathering col-
lection of samples from environment. Though these Q-value
functions are different, they would be considered similar if
we can detect the state-action mappings correctly. Our pro-
posed method, TLDA, utilizes TCA as a domain adaptation
technique to help agent find such mappings.

To make what and how skills are transfered in TLDA
clear, Figure 5 illustrates skills which learned in the source
task and the skill transferred by TLDA form source task
into target task. Note that, since the output of domain
adaptation component in TLDA contains noise, we apply
Knn classifier on the output to reduce noise.

In this paper, we use four metrics introduced in [29] to
measure the benefits of transfer: 1) Jumpstart, the improve-
ment of an agent at the initial performance in a target
task, 2) Asymptotic performance, the final performance of
a learned agent in a target task, 3) Transfer ratio, the ra-
tio of the total accumulated reward by the agent benefit-
ing transfer learning to the total accumulated reward by
the agent without transfer learning, 4) Time to threshold :
the difference of learning time in terms of episodes needed
by the agent to achieve a pre-specified performance level in
both source and target tasks. As authors claimed [29], each
metrics has drawbacks and none are sufficient to fully de-
scribe the benefits of any transfer methods. Although these
metrics seems implicitly evident in Figure 3, they are ex-
plicitly outlined in Table 1. It is worth mentioning that in
calculation of Time to threshold metric, the asymptotic per-
formance of SCL is defined as threshold, because SCL can
be considered as the state-of-art skill learning method. Ac-
cording to Jumpstart metric, using transfer learning makes
the agent reach SCL’s performance before 350 episodes while
SCL achieves this after 500 episodes. The results indicate
that TLDA outperforms GSL, an agent without utilizing
transfer learning technique, in terms of mentioned metrics.

5. CONCLUSIONS
In continuous domains, the standard RL methods are re-

stricted by the required learning time and the curse of di-
mensionality. To lessen these issues, this paper has proposed
a method for transfer learning within RL using domain adap-
tation technique. The new approach is named Transfer
Learning via Domain Adaptation (TLDA). A TLDA based
agent learns source task by extracting learned skills as high-

(a) Scenarios 1 and 2: Transferring from env1 to rotated env1

(b) Scenarios 3: Transferring from env1 to env2

(c) Scenarios 4: Transferring from env2 to env1

Figure 3: Comparison of learning performance of five agents:
1) agent with flat policy (Sarsa), 2) SCL agent, 3) GSL
agent, 4) TLDA agent employing domain adaptation based
transfer learning , in three different scenarios

Table 1: Results of TLDA method

Scenarios Jumpstart
Asymptotic Transfer Time to

Performance ratio threshold

1 1560(±324) 9230(±430) 6.2%(±0.07) 187(±28)

2 1400(±230) 8935(±256) 3.1%(±0.1) 340(±45)

3 1610(±360) 8810(±370) 5.9%(±0.12) 140(±23)

4 1230(±431) 8960(±410) 3.6%(±0.09) 235(±37)

127

Figure 4: Q-value function in env1 (up-left), env2 (up-right),
env1 rotated 90deg (down-left) and env1 rotated -90deg
(down-right).

(a) Scenarios 1: Transferring from env1 to rotated env1

(b) Scenarios 3: Transferring from env1 to env2

(c) Scenarios 4: Transferring from env2 to env1

Figure 5: Extracted Skills in source task (left), Transferred
skills into target task (right)

level knowledge to be used in new target task. The agent
firstly constructs a connectivity graph as a model to cap-
ture its experiences and environment’s dynamics. Then, it
defines skills based on detecting communities of such graph
and then learns these skills. After learning the source task,
TLDA utilize a well-known domain adaptation algorithm,
named TCA [24], to find the relations between transition
samples collected from both source and target tasks. TCA
learns a set of transfer component as a latent space in a
RKHS such that when projecting source and target samples
onto this latent space, the distance between the domains

of samples can be reduced. After discovering such latent
space, we can compare the collected samples and find the
state-action mappings, χS and χA, between source and tar-
get domains. Having these mappings helps TLDA agent to
be able to apply skills that are learned previously in source
task into a new but related heterogeneous task. We ex-
amined our method in different scenarios containing a four-
dimensional continuous test domain for RL algorithms. The
promising results indicate that transferring skills as a high-
level knowledge from the source task to target task by using
domain adaptation technique is lucrative. In future, we plan
to extend our transfer learning framework by proposing a
mechanism to estimate the fitness of each skills, which are
learned from source task, in target task and consequently
TLDA only transfers those skills whose fitness value are
acceptable. Besides, here we utilize unsupervised domain
adaptation technique, we plan to use semi-supervised do-
main adaptation for the sake of better state-action mapping
estimation.

REFERENCES
[1] H. B. Ammar, E. Eaton, P. Ruvolo, and M. E. Taylor.

Unsupervised cross-domain transfer in policy gradient
reinforcement learning via manifold alignment. In
Proc. of AAAI, 2015.

[2] H. B. Ammar, E. Eaton, M. E. Taylor, D. C. Mocanu,
K. Driessens, G. Weiss, and K. Tuyls. An automated
measure of mdp similarity for transfer in reinforcement
learning. In Workshops at the Twenty-Eighth AAAI
Conference on Artificial Intelligence, 2014.

[3] H. B. Ammar, K. Tuyls, M. E. Taylor, K. Driessens,
and G. Weiss. Reinforcement learning transfer via
sparse coding. In Proceedings of the 11th International
Conference on Autonomous Agents and Multiagent
Systems-Volume 1, pages 383–390. International
Foundation for Autonomous Agents and Multiagent
Systems, 2012.

[4] M. Asadi and M. Huber. Effective Control Knowledge
Transfer Through Learning Skill and representation
hierarchies. In 20th International Joint Conference on
Artificial Intelligence, number Icml, pages 2054–2059,
2007.

[5] M. Asadi and M. Huber. A Dynamic Hierarchical Task
Transfer in Multiple Robot Explorations. In
Proceedings on the International Conference on
Artificial Intelligence (ICAI), volume 8, pages 22–27,
2015.

[6] B. Bocsi, L. Csató, and J. Peters. Alignment-based
transfer learning for robot models. In Neural Networks
(IJCNN), The 2013 International Joint Conference
on, pages 1–7. IEEE, 2013.

[7] W. Dabney and A. Barto. Adaptive Step-Size for
Online Temporal Difference Learning. Twenty-Sixth
AAAI Conference on Artificial . . . , pages 872–878,
2012.

[8] M. Fang, Y. Guo, X. Zhang, and X. Li. Multi-source
transfer learning based on label shared subspace.
Pattern Recognition Letters, 51:101–106, jan 2015.

[9] N. Ferns, P. Panangaden, and D. Precup. Bisimulation
metrics for continuous markov decision processes.
SIAM Journal on Computing, 40(6):1662–1714, 2011.

[10] A. Gretton, K. M. Borgwardt, M. J. Rasch,

128

B. Schölkopf, and A. Smola. A kernel method for the
two-sample problem. Journal of Machine Learning
Research, 1:1–10, 2008.

[11] G. Konidaris and A. A. S. Barreto. Skill discovery in
continuous reinforcement learning domains using skill
chaining. In Advances in Neural Information
Processing Systems, pages 1015–1023, 2009.

[12] G. Konidaris, S. Kuindersma, A. Barto, and
R. Grupen. Constructing skill trees for reinforcement
learning agents from demonstration trajectories.
Advances in neural . . . , pages 1–9, 2010.

[13] G. Konidaris, S. Kuindersma, R. Grupen, and
A. Barto. CST : Constructing Skill Trees by
Demonstration. In Proceedings of the ICML Workshop
on New Developments in Imitation Learning, 2011.

[14] G. Konidaris, P. Thomas, S. Osentoski, and
P. Thomas. Value Function Approximation in
Reinforcement Learning using the Fourier Basis.
Proceedings of the Twenty-Fifth Conference on
Artificial Intelligence, pages 380–385, 2011.

[15] A. Lazaric. Transfer in Reinforcement Learning : a
Framework and a Survey. Reinforcement Learning,
12:143–173, 2012.

[16] A. Lazaric and M. Restelli. Transfer from Multiple
MDPs. In Advances in Neural Information Processing
Systems, pages 1746—-1754, 2011.

[17] A. Lazaric, M. Restelli, and A. Bonarini. Transfer of
samples in batch reinforcement learning. In
Proceedings of the 25th international conference on
Machine learning - ICML ’08, pages 544–551, New
York, New York, USA, 2008. ACM Press.

[18] Y. Liu and P. Stone. Value-function-based transfer for
reinforcement learning using structure mapping. In
Proceedings of the National Conference on Artificial
Intelligence, volume 21, page 415. Menlo Park, CA;
Cambridge, MA; London; AAAI Press; MIT Press;
1999, 2006.

[19] M. Long, J. Wang, G. Ding, D. Shen, and Q. Yang.
Transfer learning with graph co-regularization. IEEE
Transactions on Knowledge and Data Engineering,
26(7):1805–1818, 2014.

[20] A. McGovern and A. G. Barto. Automatic Discovery
of Subgoals in Reinforcement Learning using Diverse
Density. In Proceedings of the 18th International
Conference on Machine Learning, pages 361 – 368,
2001.

[21] P. Moradi, M. E. Shiri, and N. Entezari. Automatic
Skill Acquisition in Reinforcement Learning Agents
Using Connection Bridge Centrality. Communications
in Computer and Information Science, pages 51–62,
2010.

[22] P. Moradi, M. E. Shiri, A. A. Rad, A. Khadivi, and
M. Hasler. Automatic skill acquisition in
reinforcement learning using graph centrality
measures. Intelligent Data Analysis, 16:113–135, 2012.

[23] K.-R. Müller, S. Mika, G. Rätsch, K. Tsuda, and
B. Schölkopf. An introduction to kernel-based learning
algorithms. Neural Networks, IEEE Transactions on,
12(2):181–201, 2001.

[24] S. J. Pan, I. W. Tsang, J. T. Kwok, and Q. Yang.
Domain adaptation via transfer component analysis.
Neural Networks, IEEE Transactions on,

22(2):199–210, 2011.

[25] S. J. Pan and Q. Yang. A Survey on Transfer
Learning. IEEE Transactions on Knowledge and Data
Engineering, 22(10):1345–1359, oct 2010.

[26] V. Soni and S. Singh. Using homomorphisms to
transfer options across continuous reinforcement
learning domains. In AAAI, volume 6, pages 494–499,
2006.

[27] R. S. S. Sutton, D. Precup, and S. Singh. Between
MDPs and semi-MDPs: A framework for temporal
abstraction in reinforcement learning. Artificial
Intelligence, 112(1-2):181–211, aug 1999.

[28] N. Taghizadeh and H. Beigy. A novel graphical
approach to automatic abstraction in reinforcement
learning. Robotics and Autonomous Systems,
61(8):821–835, aug 2013.

[29] M. E. Taylor and P. Stone. Transfer Learning for
Reinforcement Learning Domains : A Survey. Journal
of Machine Learning Research, 10:1633–1685, 2009.

[30] M. E. Taylor and P. Stone. An Introduction to
Intertask Transfer for Reinforcement Learning. AI
Magazine, 32(1):15, 2011.

[31] M. E. Taylor, S. Whiteson, and P. Stone. Transfer via
inter-task mappings in policy search reinforcement
learning. In Proceedings of the 6th International Joint
Conference on Autonomous Agents and Multiagent
Systems, May 2007.

129

Reinforcement Learning from Demonstration
and Human Reward

Guangliang Li and Bo He
College of Information Science and Engineering

Ocean University of China
guangliang.li2010@gmail.com, bhe@ouc.edu.cn

ABSTRACT
In this paper, we proposed a model-based method—IRL-TAMER—
for combining learning from demonstration via inverse reinforce-
ment learning (IRL) and learning from human reward via the TAM-
ER framework. We tested our method in the Grid World domain
and compared with the TAMER framework using different dis-
count factors on human reward. Our results suggest that with one
demonstration, although an agent learning via IRL cannot obtain
an effective policy navigating to the goal state, it can still learn
a useful value function indicating what states are good based on
the demonstration. More importantly, learning from demonstration
can reduce the number of human rewards needed to obtain an op-
timal policy, especially the number of negative feedback. That is
to say, learning from demonstration can be a jump-start for agent’s
learning from human reward and reduce the number of mistakes—
incorrect actions. Furthermore, our results show that learning from
demonstration can only be useful for agent’s learning from human
reward when the discount rate is high, i.e., learning from myopic
human reward.

Categories and Subject Descriptors
I 2.6 [Artificial Intelligence]: Learning

General Terms
Performance, Human Factors, Experimentation

Keywords
Reinforcement learning, learning from demonstration, learning from
human reward, inverse reinforcement learning

1. INTRODUCTION
Artificial intelligence (AI) research, a central goal of which is

to deploy autonomous agents to tackle real world problems, is en-
joying an explosive boom. On the strength of the booming of AI,
autonomous agents are springing up like mushroom after the rain
and start entering into people’s daily lives. Since these agents will
operate in human inhabited environments in most real world ap-
plications, the skills to interact and learn from human users in a
natural way will be key to their success.

Learning from human reward [11] has been proved to be a pow-
erful method for facilitating non-technical people to teach an agent
to perform a task. However, in learning from human reward, an
agent learns from trial-and-error: when the agent performs a cor-
rect action, a positive reward can be used to encourage it, and when
a bad action is performed, a punishment needs to be used to push
the agent to try some other actions, which may run the risk of trying

even worse behaviors. In some situation, this will make the agent
learning dangerous or induce high cost, especially for the physical
robot learning, e.g., learning to drive a car.

On the other hand, learning from demonstration [3] that is an-
other main natural teaching methods developed for enabling au-
tonomous agents to learn from a non-technical teacher, will often
lead to faster learning than reward signals, since the correct action
can be directly communicated by the demonstrator. Even the hu-
man trainer is not an expert in the task and can not provide the
correct behavior, the demonstration can still highlight a subspace
for the agent to explore. Nevertheless, the performance of agent’s
learning from demonstration is usually limited by the trainer’s per-
formance, while an agent learning from human reward can surpass
the trainer’s performance in the task in general.

Therefore, it would be meaningful if we could use demonstra-
tions to seed the agent’s learning from human reward, which will
potentially reduce the agent’s failures in the learning process and
speed up its learning, and finally learn a policy that is possible to
surpass the teacher’s performance.

Actually this is what people prefer to do in reality for teaching
an agent. Recently, a “Wizard of OZ" study [10, 22] investigated
the teaching styles of a human teacher when she was given sev-
eral different teaching methods to use and teach an agent that was
secretly controlled by a confederate human — the wizard. They
found that the teaching with human reward was never employed it-
self but was used to fine-tune the learned behavior after testing the
agent’s skills learned with other teaching methods, e.g., teaching
with demonstration or concept examples.

In this paper, to realize the possibility, we proposed a method–
IRL-TAMER, which combines inverse reinforcement learning (IR-
L)—a typical method for agent’s learning from demonstration and
the TAMER framework—one typical method for agent’s learning
from human reward. We hypothesize that agents learn via IRL-
TAMER will require less feedback than agent learning from human
reward alone, especially the negative one. We tested our method
in the Grid World domain and compared with agent learning via
the TAMER framework using different discount factors on human
reward. Our results suggest that, although with one single demon-
stration an agent learning via IRL cannot obtain an effective policy,
it can still learn a useful value function indicating good states based
on the demonstration. More importantly, learning from demonstra-
tion can reduce the number of human feedback needed to obtain an
optimal policy, especially the number of negative feedback. That is
to say, learning from demonstration can be a jump-start for agent’s
learning from human reward and reduce the number of mistakes—
incorrect actions. Furthermore, our results show that learning from
demonstration can only be useful for agent’s learning from human
reward when the discount rate is high (with lower discount values).

130

2. RELATED WORK

2.1 Learning from Demonstration
In learning from demonstration, the agent learns from sequences

of state-action pairs provided by a human trainer who demonstrates
the desired behavior [3]. For example, apprenticeship learning
[1] is a form of learning from demonstration, which learns how
to perform a task using inverse reinforcement learning [21] from
observations of the behavior demonstrated by an expert teacher.
In learning from demonstration, the learned policy derived from
demonstrations is confined by states encountered and correspond-
ing actions taken during the execution of the demonstration, which
could be suboptimal in the task. Therefore, the agent’s performance
is limited by the information provided in the demonstration and is
hard or even impossible to surpass the expert. Therefore, to im-
prove upon what is learned directly from the trainer’s demonstra-
tion, Argall et al. [2] proposed a method wherein the agent learns
from both demonstrations and the trainer’s critiques of the agent’s
task performance, which is quite related to our work in this paper.
However, our work differs in allowing the human trainer to provide
human rewards — evaluations of the quality of the agent’s action —
to fine-tune the agent’s behavior while in their work only the cri-
tiques of the whole task’s performance were provided. Chernova
and Veloso [6] proposed an approach in which the agent, based on
its confidence in its learned action selection, actively requests sup-
plementary demonstrations from the human teacher to correct its
mistakes.

The work of Judah et al. [9] is most related to our work in this
paper. Specifically, they used a specified shaping reward function
to improve the learning efficiency of learning from demonstration.
However, our work differs by allowing the shaping reward to be
provided by a human trainer not pre-defined potential function by
the agent designer.

In addition, Brys et al. [5] proposed a method for speeding up
reinforcement agent learning from environmental rewards by re-
ward shaping via a learned potential function from demonstrations.
While in our work, we used demonstrations to learn a policy as a
jump-start and allowed the human trainer to fine-tune and further
improve the learned policy with human rewards.

2.2 Learning from Human Reward
In learning from human reward, a human trainer evaluates the

quality of an agent’s behavior and gives the agent feedback, which
it uses to improve its behavior. This kind of feedback can be re-
stricted to express various intensities of approval and disapproval
and mapped to numeric “reward” for the agent to revise its behav-
ior [8, 13, 26, 23, 24].

Clicker training [4] is a related concept that involves using only
positive reward to train an agent. It is a form of animal training in
which the sound of an audible device such as a clicker or whistle
is associated with a primary reinforcer such as food and then used
as a reward signal to guide the agent towards desired behavior. In
the first work using both reward and punishment to train an artificial
agent [8], a software agent called Cobot was developed by applying
reinforcement learning in an online text-based virtual world where
users interact with each other. The agent learned to take proactive
actions from multiple sources of human reward, which are ‘reward
and punish’ text-verbs invoked by multiple users.

In addition, Thomaz and Breazeal [27] implemented an inter-
face with a tabular Q-learning [28] agent where a separate inter-
action channel was provided allowing the human to give the agent
feedback. The agent aims to maximize its total discounted reward,
which is the sum of human reward and environmental reward. They

treated the human’s feedback as additional reward that supplements
the environmental reward. Moreover, an improvement in agent per-
formance was shown by allowing the trainer to give action advice
on top of human reward. Suay and Chernova [24] extended their
work to a real-world robotic system using only human reward.

Knox and Stone [11] proposed the TAMER framework that al-
lows an agent to learn from only human reward signals instead of
environmental rewards by directly modeling the human reward. A
TAMER agent learns a “good" policy faster than a traditional rein-
forcement agent learner, but the latter is better at maximizing the
final, peak performance after many more trials. To climb up the
learning curve, in the TAMER+RL framework [14, 15], the agent
learns from both the human and environmental feedback, leading to
a better performance than learning from either alone. This can be
done sequentially (i.e., the agent first learns from the human feed-
back and then the environmental feedback) [14] or simultaneously
(i.e., the agent learns from both at the same time), allowing the
human trainer to provide feedback at any time during the learning
process [15]. Using TAMER as a foundation, Knox et al. [12] ex-
amine how human trainers respond to changes in their perception
of the agent and to certain changes in the agent’s behavior, while
Li et al. [17, 18] investigate how to improve agent’s learning from
human reward and study how agent’s informative feedback affects
trainers’ behaviors and agent’s learning. Knox et al. find that the
agent can induce the human trainer to give more feedback but with
lower performance when the quality of the agent’s behavior is de-
liberately reduced whenever the rate of human feedback decreases.
Li et al. show that more and higher quality feedback is elicited from
the trainers when the agent’s past and present performance is dis-
played to the trainer.

While the work mentioned above interprets human feedback as a
numeric reward, Loftin et al. [19, 20] interpreted human reward as
categorical feedback strategies that depend both on the behavior the
trainer is trying to teach and the trainer’s teaching strategy. They
inferred knowledge about the desired behavior from cases where no
feedback is provided and showed that their algorithms learn faster
than algorithms that treat the feedback as numeric reward.

3. TAMER FRAMEWORK
The TAMER framework was built for a variant of the Markov

decision process (MDP), a model of sequential decision-making
addressed via dynamic programming [7] and reinforcement learn-
ing [25]. In the TAMER framework, an agent learns in an MDP
without an explicitly defined reward function but learns a reward
function instead, denoted as MDP\R.

A TAMER agent learns from a human trainer’s real-time evalua-
tion of its behaviors. The agent interprets this evaluation as human
reward, creates a predictive model of it, and selects actions it pre-
dicts will elicit the most human reward. It strives to maximize the
immediate reward caused by its action, which contrasts with tradi-
tional reinforcement learning, in which the agent seeks the largest
discounted sum of future rewards. There are two reasons why
an agent can learn to perform tasks from a myopic reward value.
Firstly, the human reward can be delivered with small delay, which
is the time it takes for a trainer to evaluate the agent’s action and de-
liver her feedback. Secondly, the evaluation provided by a human
trainer carries a judgment of the behavior itself with a model of its
long-term consequences in mind. A TAMER agent learns a func-
tion R̂H(s, a) that approximates the expected human reward con-
ditioned on the current state and action, R̂H : S × A→ <. Given
a state s, the agent myopically chooses the action with the largest
estimated expected reward, arg maxa R̂H(s, a). The trainer can
observe and evaluate the agent’s behavior and give reward.

131

In TAMER, feedback is given via keyboard input and attributed
to the agent’s most recent action. Each press of one of the feedback
buttons registers as a scalar reward signal (either -1 or +1). This sig-
nal can also be strengthened by pressing the button multiple times
and the label for a sample is calculated as a delay-weighted aggre-
gate reward based on the probability that a human reward signal
targets a specific time step. The TAMER learning algorithm re-
peatedly takes an action, senses reward, and updates Ĥ . Note that
unlike [11], when no feedback is received from the trainer, learning
is suspended until the next feedback instance is received.

Until recently, general myopia was a feature of all algorithms in-
volving learning from human feedback and has received empirical
support [16]. However, a variation on TAMER called VI-TAMER
was recently proposed that facilitates an agent learning from non-
myopic human reward [16]. In VI-TAMER, an agent learns from
discounted human reward. With a planning algorithm—value iter-
ation, a VI-TAMER agent learns and adapts its value function to
the most recent reward function R̂H changed from TAMER and
uses the value function to choose actions for the next step.

The original TAMER can be regarded as a special case of VI-
TAMER with the discount factor as 0. Therefore, in this paper,
from now on, we take TAMER as a method for generally learn-
ing from human reward with γTAMER as a discount factor on the
human reward, referring to VI-TAMER.

4. INVERSE REINFORCEMENT LEARNING
Similar to the TAMER framework, in inverse reinforcement learn-

ing (IRL), an agent also learns in an MDP\R [21]. The difference
between inverse reinforcement learning and TAMER is the input
provided by the human trainer, where demonstrations of the de-
sired behavior are provided for inverse reinforcement learning and
human reward signals are provided in the TAMER framework.

An agent learning via inverse reinforcement learning assumes
that there is a vector of features φ over states, and a “true" unknown
reward functionR∗ = w∗·φ(s) on which the demonstrator is trying
to optimize [1]. The value of a policy π is

V (π) = E[Σ∞k=0γ
kR(st)|π]

= E[Σ∞k=0γ
kw · φ(st))|π]

= w · E[Σ∞k=0γ
kφ(st))|π].

(1)

We define the feature expectations to be

µ(π) = E[Σ∞k=0γ
kφ(st))|π], (2)

which is the expected discounted accumulated feature value vector.
With this notation, the value of a policy π can be written as

V (π) = w · µ(π). (3)

Therefore, if we can find the optimal (or close to) weight vector w
for the reward functionR, then the optimal value function of policy
π can be derived with Equation 3, which can attain performance
near that of the demonstrator’s on the unknown reward function R.

5. IRL-TAMER
In this paper, we intend to combine learning from demonstra-

tion and human reward and propose the IRL-TAMER framework.
IRL-TAMER consists of two algorithms that run in sequence: (1)
IRL learns a reward function from demonstrations provided by the
human trainer and (2) TAMER learns a value function with a pre-
dictive reward model learned from human reward and the value
function will be used for action selection. IRL-TAMER allows the

human trainer to provide demonstrations first which typically con-
sist of sequences of state-action pairs {(s0, a0), ..., (sn, an)}. The
learned reward function via IRL from the demonstration is used as
an initialization for the reward function R̂H in TAMER. Then the
human trainer can fine-tune the agent’s behavior with human re-
wards. In our approach, the IRL module was implemented with
the projection algorithm [1], though approaches such as maximum
entropy, bayesian and game-theoretic can also be used.

Since the “Wizard of OZ" study [10, 22] showed that human re-
wards are usually used by trainers to fine-tune the agent’s behavior
after testing its skills learned from demonstration, the IRL-TAMER
framework is proposed to facilitate the human trainer to teach an
agent with both demonstrations and human rewards. In this paper,
we would like to test the effect of demonstrations on agent’s learn-
ing from human reward, not to solve the task with demonstrations
or human reward alone. Therefore, we assume the human trainer
prefer to provide one demonstration first and then use human re-
ward to revise the agent’s behavior, though more demonstrations
can be provided even until the problem in the task is solved with
only demonstrations. However, we will investigate the effect of
more demonstrations on agent’s learning from human reward and
even the interchangeability of demonstrations and human rewards
in future work.

6. EXPERIMENTS
To demonstrate the potential usefulness of the proposed approach,

in this paper, we perform experiments in the Grid World domain
which has discrete state and action spaces.

6.1 Grid World Domain
The grid world task contains 30 states. For each state, the agent

can choose from four actions at each time step: moving up, down,
left or right. The action attempted through a wall results in no
movement for that step. Task performance metrics are based on
the number of time steps (actions) taken to reach the goal. The
agent always starts one learning episode in the same state, which is
shown as the robot’s location in Figure 1. The red cross indicates
the direction of the agent’s action. In the task, the agent tries to
learn a policy that can reach the goal state (the blue square in Figure
1) with as few time steps as possible. The optimal policy from the
start state requires 19 actions.

Figure 1: A screenshot of Grid World domain. The robot’s
current location is the starting state for each episode, and the
goal state is the blue block next to it with a wall between them.
Note that the dark black lines and the grey blocks are walls.

The TAMER framework and the TAMER module in IRL-TAMER

132

are the same, i.e., when we say γTAMER, it applies to both of them.
Therefore, the only difference between TAMER and IRL-TAMER
is whether the IRL module is incorporated or not. A linear model of
Gaussian radial basis functions is employed as the representation of
human reward modelRH for TAMER and the learned reward func-
tion R from demonstration in IRL. Value functions V for the IRL
module and TAMER are also a linear function approximation with
Gaussian radial basis functions.

One radial basis function is centered on each cell of the grid
world, effectively creating a pseudo-tabular representation that gen-
eralizes slightly between nearby cells. Each radial basis function
has a width σ2 = 0.05, where 1 is the distance to the nearest ad-
jacent center of a radial basis function, and the linear model has an
additional bias feature of constant value 0.1 [16].

6.2 Experimental Setup
In our experiments, to see whether the agent learning from demon-

stration can improve its learning from human reward, we com-
pare the agent learning through the TAMER framework to that
via IRL-TAMER with different discount factors on human reward
(γTAMER). The discount factor for the IRL model is set to 1
(γIRL). The first author trained both IRL-TAMER and TAMER
agents with all discount factors and each agent with every discount
factor for 10 trials. For each trial with either method, we trained the
agent to the best ability until an optimal policy is obtained. With
IRL-TAMER, we first provide one single demonstration navigating
from the start state to the goal state via keyboard, and then train
the agent with human rewards as in the TAMER framework. The
analysis in the next section is based on an average of data collected
from the 10 trials.

7. RESULTS
This section presents results of our experiments with discount

factor γIRL = 1.0 for the IRL module, paired with discount fac-
tor γTAMER = 0, 0.1, 0.9 and 1.0 on human reward for TAMER.
Note that γTAMER for the TAMER module in IRL-TAMER and
the TAMER framework are with the same values.

7.1 Agent Learning with IRL
First, we want to see whether the agent can learn an effective pol-

icy from demonstrations through IRL. Figure 2 shows the heat map
of the value function learned through IRL with a single demonstra-
tion. From Figure 2, we can see that although the agent cannot
learn a policy navigating to the goal state, it can still learn a use-
ful value function indicating which states are good based on the
provided demonstration.

7.2 Number of Feedback
We hypothesized that agents trained with IRL-TAMER will re-

quire less feedback than those with TAMER framework, especially
the negative one. To measure the amount of feedback given, we
counted the number of time steps with feedback, comparing IRL-
TAMER to TAMER. Figure 3 shows the the number of time step
with feedback for both IRL-TAMER and TAMER agents with dif-
ferent discount factors, in terms of total feedback, positive and neg-
ative feedback.

From Figure 3 we can see that, the IRL-TAMER agent received
significantly less feedback than the TAMER agent when the dis-
count factor γTAMER = 0, 0.1 for the TAMER module, especially
the negative one. This means that demonstrations can reduce the
total number of human rewards needed to train an agent to get an
optimal policy. Moreover, the provided demonstration can reduce
the number of incorrect actions when learning from human reward

Figure 2: Heat map of the state value function learned from a
single demonstration in the IRL module.

with trial-and-error. However, when γTAMER = 0.9 and 1.0, i.e.,
the agent learns from human reward non-myopically, the amount
of feedback received by both the IRL-TAMER and TAMER agents
are similar.

In summary, our results suggest that learning from demonstration
via IRL can reduce the number of human rewards needed for train-
ing the agent to obtain an optimal policy compared to the TAMER
framework. However, the effect of learning from demonstration is
significant when the discount rate on human reward is high, i.e.,
learning from myopic human reward. When the discount factor on
human reward is 0.9 and 1.0, the effect of demonstrations is trivial.

7.3 Performance
Since the task performance metrics are based on the time steps

taken to reach the goal in the Grid World domain, we take the num-
ber of total time steps needed to train the agent to obtain an optimal
policy as the performance measure in our experiments. Figure 4
shows the total number of time steps (actions) for training an agent
to obtain an optimal policy with IRL-TAMER and TAMER using
different discount factors on human reward. From Figure 4 we can
see that, the total number of time steps needed to train an IRL-
TAMER agent is much fewer than a TAMER agent for γTAMER

= 0 and 0.1. However, when γTAMER = 0.9 and 1.0, the differ-
ence of the total number of time steps needed between training an
IRL-TAMER agent and a TAMER agent is small.

We also analyzed the number of time steps per episode trained
with IRL-TAMER and TAMER during the training process, as shown
in Figure 5. From Figure 5 we can see that, for γTAMER = 0, the
number of time steps for each episode with IRL-TAMER is fewer
than that with TAMER before obtaining an optimal policy. When
γTAMER = 0.1, the number of time steps per episode with IRL-
TAMER is generally significantly fewer than that with TAMER
until the 7th episode when both agents obtain an optimal policy.
However, when γTAMER = 0.9 and 1.0, the number of time steps
per episode is almost the same for IRL-TAMER and TAMER. Dif-
ferent from γTAMER = 0 and 0.1, it took only four or five episodes
to obtain an optimal policy when γTAMER = 0.9 and two episodes
when γTAMER = 1.0.

8. DISCUSSION
In this paper, to improve the agent’s learning from human re-

ward, we proposed a method to combine learning from demonstra-
tion via IRL and learning from human reward via TAMER, and
investigated the effect of learning from demonstration on learning

133

Total Negative Positive

γIRL=1.0, γTAMER=0
N

um
be

r o
f t

im
e

st
ep

s
w

ith
 fe

ed
ba

ck

0

50

100

150

200

250

300
IRL-TAMER
TAMER

Total Negative Positive

γIRL=1.0, γTAMER=0.1

N
um

be
r o

f t
im

e
st

ep
s

w
ith

 fe
ed

ba
ck

0

50

100

150

200

250

300
IRL-TAMER
TAMER

Total Negative Positive

γIRL=1.0, γTAMER=0.9

N
um

be
r o

f t
im

e
st

ep
s

w
ith

 fe
ed

ba
ck

0

50

100

150

200

250

300
IRL-TAMER
TAMER

Total Negative Positive

γIRL=1.0, γTAMER=1.0

N
um

be
r o

f t
im

e
st

ep
s

w
ith

 fe
ed

ba
ck

0

50

100

150

200

250

300
IRL-TAMER
TAMER

Figure 3: Number of time steps with feedback trained until an optimal policy is obtained with different discount factors on human
reward, in terms of total, positive and negative feedback. Note: black bars stand for the standard error of the mean.

IRL-TAMER TAMER

γIRL=1.0, γTAMER=0

To
ta

l n
um

be
r o

f t
im

e
st

ep
s

0

50

100

150

200

250

300

350

IRL-TAMER TAMER

γIRL=1.0, γTAMER=0.1

To
ta

l n
um

be
r o

f t
im

e
st

ep
s

0

50

100

150

200

250

300

350

IRL-TAMER TAMER

γIRL=1.0, γTAMER=0.9

To
ta

l n
um

be
r o

f t
im

e
st

ep
s

0

50

100

150

200

250

300

350

IRL-TAMER TAMER

γIRL=1.0, γTAMER=1.0

To
ta

l n
um

be
r o

f t
im

e
st

ep
s

0

50

100

150

200

250

300

350

Figure 4: Total number of time steps needed to obtain an optimal policy with different discount factors on human reward for
IRL-TAMER and TAMER. Note: black bars stand for the standard error of the mean.

from human reward with different discount factors on human re-
ward. Our results show that although with a single demonstration,
an agent learning via IRL cannot obtain an effective policy, it can
still learn a useful value function which can indicate what states are
good according to the provided demonstration. More importantly,
learning from demonstration can reduce the number of human re-
wards needed to obtain an optimal policy, especially the number
of negative feedback. That is to say, learning from demonstration
can be a jump-start for agent’s learning from human reward and
reduce the number of mistakes—incorrect actions. This could be
pretty useful for physical robot learning in the real world, in which
demonstrations are feasible and an incorrect action may have huge
cost or even be dangerous.

In addition, our results also show that the discount rate on hu-
man reward has a large effect on the usefulness of learning from
demonstration. When γTAMER is high, the effect of learning from
demonstration is trivial. In this case, the reward function could en-
code the trainer’s idea of high-level task information and the agent
can learn the general goals of the task and be robust to changes of
the environment [16]. However, it will need lots of feedback to train
the agent to learn the high-level task information from the human
trainer disregarding what the agent learned before from demon-
strations, which could be the cause of the trivial effect of learning
from demonstration. When γTAMER is low, e.g. with value 0, the
learned human reward function is equivalent to the value function
with discount factor of zero, in which agents learn from myopic hu-
man rewards. In this case, IRL with demonstrations allow the agent
to look farther in the future, the low discount on human reward al-
lows the trainer to micromanage the agent’s behavior. This could be
the cause that learning from demonstration can significantly reduce
the number of feedback needed compared to learning from human
rewards alone, especially the negative one.

9. CONCLUSIONS AND FUTURE WORK
In this paper, we proposed a model-based method—IRL-TAM-

ER—for combining learning from demonstration via IRL and learn-
ing from human reward via the TAMER framework. We tested our
method in the Grid World domain with different discount factors
on human reward and compare to the agent learning from human
reward alone with the TAMER framework. Our results suggest that
although an agent learning via IRL cannot obtain an effective pol-
icy navigating to the goal state, it can still learn a useful value func-
tion indicating which states are good based on the demonstration.
Moreover, learning from demonstration can reduce the number of
human rewards needed to obtain an optimal policy, especially the
number of negative feedback. That is to say, learning from demon-
stration can be a jump-start for agent’s learning from human reward
and reduce the number of mistakes—incorrect actions when learn-
ing with trial-and-error. Furthermore, our results show that demon-
strations can be useful for agent’s learning from myopic human
rewards not non-myopic ones.

In future work, we would like to further test our method in con-
tinuous and complex domains (e.g. Mountain Car) and conduct a
user study, to see how our method and results generalize to other
domains and members of the general public. In addition, we want
to further investigate why learning from demonstration can only
be useful for agent’s learning from myopic human reward and try
to study how the effect of demonstrations on learning from human
reward changes with the number of demonstrations. Finally, we
would like to test other methods for combining the learned pol-
icy from the demonstration with learning from human reward, e.g.,
maximum entropy, bayesian and game-theoretic approach for in-
verse reinforcement learning, and the interchangeability of IRL and
TAMER in the learning process.

Acknowledgments
This work is partially supported by the Natural Science Founda-
tion of China (41176076) and the High Technology Research and
Development Program of China (2014AA093410).

134

0
20

40
60

80
10
0

12
0

γIRL=1.0, γTAMER=0

Episode number

Ti
m

e
st

ep
s

pe
r e

pi
so

de

1 2 3 4 5 6 7 8 9 10

IRL-TAMER
TAMER

0
20

40
60

80
10
0

12
0

γIRL=1.0, γTAMER=0.1

Episode number

Ti
m

e
st

ep
s

pe
r e

pi
so

de

1 2 3 4 5 6 7 8 9 10

IRL-TAMER
TAMER

0
20

40
60

80
10
0

12
0

γIRL=1.0, γTAMER=0.9

Episode number

Ti
m

e
st

ep
s

pe
r e

pi
so

de

1 2 3 4 5 6 7 8 9 10

IRL-TAMER
TAMER

0
50

10
0

15
0

20
0

25
0

γIRL=1.0, γTAMER=1.0

Episode number

Ti
m

e
st

ep
s

pe
r e

pi
so

de

1 2 3 4 5 6 7 8 9 10

IRL-TAMER
TAMER

Figure 5: Number of time steps per episode needed until an optimal policy is obtained with different discount factors on human
reward for IRL-TAMER and TAMER. Note: black bars stand for the standard error of the mean.

REFERENCES
[1] P. Abbeel and A. Ng. Apprenticeship learning via inverse

reinforcement learning. ICML, 2004.
[2] B. Argall, B. Browning, and M. Veloso. Learning by

demonstration with critique from a human teacher. HRI,
2007.

[3] B. Argall, S. Chernova, M. Veloso, and B. Browning. A
survey of robot learning from demonstration. Robotics and
Autonomous Systems, 2009.

[4] B. Blumberg, M. Downie, Y. Ivanov, M. Berlin, M. Johnson,
and B. Tomlinson. Integrated learning for interactive
synthetic characters. ACM Transactions on Graphics, 2002.

[5] T. Brys, A. Harutyunyan, H. B. Suay, S. Chernova, M. E.
Taylor, and A. Nowé. Reinforcement learning from
demonstration through shaping. In Proceedings of the
International Joint Conference on Artificial Intelligence
(IJCAI), 2015.

[6] S. Chernova and M. Veloso. Interactive policy learning
through confidence-based autonomy. Journal of Artificial
Intelligence Research, 2009.

[7] R. A. Howard. Dynamic programming and markov
processes. 1960.

[8] C. Isbell, C. Shelton, M. Kearns, S. Singh, and P. Stone. A
social reinforcement learning agent. Proc. of the 5th
International Conference on Autonomous Agents, 2001.

[9] K. Judah, A. Fern, P. Tadepalli, and R. Goetschalckx.
Imitation learning with demonstrations and shaping rewards.
In Proceedings of the twenty-eighth AAAI Conference on
Artificial Intelligence, pages 1890–1896, 2014.

[10] T. Kaochar, R. T. Peralta, C. T. Morrison, I. R. Fasel, T. J.
Walsh, and P. R. Cohen. Towards understanding how humans
teach robots. In User modeling, adaption and
personalization, pages 347–352. Springer, 2011.

[11] W. Knox. Learning from Human-Generated Reward. PhD
thesis, University of Texas at Austin, 2012.

[12] W. Knox, B. Glass, B. Love, W. Maddox, and P. Stone. How
humans teach agents. IJSR, 2012.

[13] W. Knox and P. Stone. Interactively shaping agents via
human reinforcement: The TAMER framework.
International Conference on Knowledge Capture, 2009.

[14] W. Knox and P. Stone. Combining manual feedback with
subsequent MDP reward signals for reinforcement learning.
AAMAS, 2010.

[15] W. Knox and P. Stone. Reinforcement learning from
simultaneous human and MDP reward. AAMAS, 2012.

[16] W. B. Knox and P. Stone. Framing reinforcement learning
from human reward: Reward positivity, temporal

discounting, episodicity, and performance. Artificial
Intelligence, 225:24–50, 2015.

[17] G. Li, H. Hung, S. Whiteson, and W. B. Knox. Using
informative behavior to increase engagement in the tamer
framework. AAMAS, 2013.

[18] G. Li, H. Hung, S. Whiteson, and W. B. Knox. Using
informative behavior to increase engagement while learning
from human reward. Journal of autonomous agents and
multi-agent systems, 2015.

[19] R. Loftin, J. MacGlashan, M. Littman, M. Taylor, and
D. Roberts. A strategy-aware technique for learning
behaviors from discrete human feedback. In Proceedings of
the 28th AAAI Conference on Artificial Intelligence
(AAAI-2014), 2014.

[20] R. Loftin, B. Peng, J. MacGlashan, M. L. Littman, M. E.
Taylor, J. Huang, and D. L. Roberts. Learning something
from nothing: Leveraging implicit human feedback
strategies. In Proceedings of the Twenty-Third IEEE
International Symposium on Robot and Human
Communication (ROMAN), 2014.

[21] A. Y. Ng, S. J. Russell, et al. Algorithms for inverse
reinforcement learning. In Icml, pages 663–670, 2000.

[22] R. T. Peralta, T. Kaochar, I. R. Fasel, C. T. Morrison, T. J.
Walsh, and P. R. Cohen. Challenges to decoding the intention
behind natural instruction. In RO-MAN, 2011 IEEE, pages
113–118. IEEE, 2011.

[23] P. Pilarski, M. Dawson, T. Degris, F. Fahimi, J. Carey, and
R. Sutton. Online human training of a myoelectric prosthesis
controller via actor-critic reinforcement learning.
International Conference on Rehabilitation Robotics, 2011.

[24] H. Suay and S. Chernova. Effect of human guidance and
state space size on interactive reinforcement learning.
RO-MAN, 2011.

[25] R. Sutton and A. Barto. Reinforcement learning: An
introduction. Cambridge Univ Press, 1998.

[26] A. Tenorio-Gonzalez, E. Morales, and L. Villaseñor-Pineda.
Dynamic reward shaping: training a robot by voice.
Advances in Artificial Intelligence–IBERAMIA, 2010.

[27] A. L. Thomaz and C. Breazeal. Teachable robots:
Understanding human teaching behavior to build more
effective robot learners. Artificial Intelligence, 2008.

[28] C. Watkins and P. Dayan. Q-learning. Machine Learning,
1992.

135

Work in Progress: Lifelong Learning for
Disturbance Rejection on Mobile Robots

David Isele, José Marcio Luna, Eric Eaton
University of Pennsylvania

{isele, joseluna, eeaton}@seas.upenn.edu

Gabriel V. de la Cruz, James Irwin, Brandon Kallaher, Matthew E. Taylor
Washington State University

{gabriel.delacruz, james.irwin, brandon.kallaher, matthew.e.taylor}@wsu.edu

ABSTRACT
No two robots are exactly the same — even for a given
model of robot, different units will require slightly different
controllers. Furthermore, because robots change and de-
grade over time, a controller will need to change over time
to remain optimal. This paper leverages lifelong learning in
order to learn controllers for different robots. In particular,
we show that by learning a set of control policies over robots
with different (unknown) motion models, we can quickly
adapt to changes in the robot, or learn a controller for a
new robot with a unique set of disturbances. Further, the
approach is completely model-free, allowing us to apply this
method to robots that have not, or cannot, be fully mod-
eled. These preliminary results are an initial step towards
learning robust fault-tolerant control for arbitrary robots.

Categories and Subject Descriptors
I.2.6 [Artificial Intelligence]: Learning;
I.2.9 [Artificial Intelligence]: Robotics

General Terms
algorithms, experimentation

Keywords
Lifelong Learning, Policy Gradients, Reinforcement Learn-
ing, Robotics, Fault-Tolerant Control

1. INTRODUCTION
As robots become more common, there are an increasing

number of tasks they will be asked to perform. These tasks
may not be specified, or even envisioned, at design time. It
is therefore critical that robots be able to learn these task
autonomously. Reinforcement learning [11, 20] (RL) is one
popular method for such autonomous learning, but it may
be slow in practice, requiring numerous interactions with the
environment to achieve decent performance. Recent work in
transfer learning [22] can alleviate some of this burden by
using knowledge learned from previous tasks to accelerate
learning on a new target task. In this work, we take a lifelong
learning approach [23], in which the learner faces multiple
consecutive tasks and must learn each rapidly by building
upon its learned knowledge through transfer, while simulta-
neously maximizing performance across all known tasks. In
particular, we consider a set of similar robots that all have

slightly different motion models, each with their own dis-
turbances. This setting is motivated by the inherent differ-
ences between robots from small variations in their physical
or electrical components.

If the model of the robot was fully known, or could be
quickly learned, the dynamics of the system could be sta-
bilized with control theory approaches. However, in many
cases such a model is not known, or is complicated enough
(or changes quickly enough) that indirect learning of the
model is infeasible. Instead, this paper directly learns poli-
cies for the different robots through lifelong RL.

Our recent work on lifelong RL [5, 6] has showed that
this approach is able to accelerate learning of control poli-
cies using policy gradient [21, 26] (PG) methods. Lifelong
RL succeeds even when the different systems are encoun-
tered consecutively, and it preserves and possibly improves
the policies for the earliest encountered tasks (in contrast to
transfer methods which typically only optimize performance
on the new target system). However, so far this work has
been applied only to benchmark problems with known dy-
namics to demonstrate knowledge sharing, and not yet to
more complex robotic control problems. This paper signifi-
cantly scales up the complexity of experiments by applying
lifelong learning techniques to a set of TurtleBot 2 robots,
each with their own control disturbances, in the high-fidelity
Gazebo simulator. As such, this paper represents an impor-
tant step to validating lifelong learning on physical robot
platforms. The long-term goal of this work is to apply these
methods not only to quickly learn controllers for robots with
slightly different dynamics, but also to achieve fault-tolerant
control by handling minor system failures online.

2. RELATED WORK
Reinforcement learning (RL) is often used to learn con-

trollers in a model-free setting. Amongst RL algorithms,
policy gradient methods are popular in robotic applications
[12, 17] since they accommodate continuous state/action
spaces and can scale well to high dimensional problems. The
goal of lifelong learning is to learn a set of policies from con-
secutive tasks. By exploiting similarities between the tasks,
it should be possible to learn the set of tasks much faster
than if each task was learned independently. Our previous
work showed that lifelong learning could successfully lever-
age policy gradient methods [5, 6], but had been applied
only to simple benchmark dynamical systems and not more
complex robotic control problems. There have been some

136

successful examples of lifelong learning on robots, but they
tend to focus in skill refinement on a single robot [10, 24]
rather than sharing information across multiple robots.

When mathematical models that describe the behavior of
physical systems can be constructed, they can be used to an-
alyze, predict and control a robot’s behavior. Well-known
techniques for modeling physical systems include partial, or-
dinary differential and difference equations [9, 16], and Dis-
crete Event Systems (DES) such as queuing networks [15,
25] and Petri networks [7]. Typical problems in controlling
such systems are regulation, trajectory tracking, disturbance
rejection, and robustness [9, 14, 16]. All of these problems
are associated with the analysis of the stabilizability of the
system, as well as the design of controllers to stabilize it.

Most similar to our setting is that of disturbance rejec-
tion, where a controller is designed to complete a task while
compensating for a disturbance that modifies its nominal
dynamics. As long as there is an accurate model of the
robot, current methods can handle constant, time-varying,
and even stochastic disturbances [8, 9, 14]. However, such
methods are generally inapplicable when the robot model is
unknown, even if the disturbances are relatively simple. Our
work is motivated by control theory approaches, but focuses
on leveraging model-free RL techniques.

3. BACKGROUND
This section provides an overview of background material

to understand the techniques used in our experiments.

3.1 Reinforcement Learning
An RL agent must sequentially select actions to maxi-

mize its expected return. Model-free RL approaches do not
require previous knowledge of the system dynamics; they
learn control policies directly through interaction with the
system. RL problems are typically formalized as Markov
Decision Processes (MDPs) with the form 〈X ,A, P,R, γ〉
where X ⊂ Rdx is the set of states, A is the set of actions,
P : X ×A×X → [0, 1] is the state transition probability de-
scribing the systems dynamics with initial state distribution
P0, R : X ×A → R is the reward function, and γ ∈ [0, 1) is
the reward discount factor. At each time step h, the agent
is in the state xh ∈ X and must choose an action ah ∈ A
so that it transitions to a new state xh+1 with state tran-
sition probability P (xh+1 | xh,ah), yielding a reward rh
according to R. The action is selected according to a policy
πθ : X×A → [0, 1], which specifies a probability distribution
over actions given the current state and is parameterized by
θ. The goal of an RL algorithm is to find an optimal policy
π∗ that maximizes the expected reward.

PG methods are well suited for solving high dimensional
problems with continuous state and action spaces, such as
robotic control [17]. The goal of PG is to use gradient steps
based on a set of observed state-action-reward trajectories
of length H to optimize the expected average return of πθ:
J (θ) =

∫
T pθ(τ)R(τ)dτ , where T is the set of all trajecto-

ries, pθ(τ) = P0(x0)
∏H
h=0 p(xh+1 | xh,ah)πθ(ah | xh) is the

probability of trajectory τ , and R(τ) = 1
H

∑H
h=0 rh is the

average per-step reward. Most PG methods (e.g., episodic
REINFORCE [26], Natural Actor Critic [17], and PoWER
[12]) optimize the policy by maximizing a lower bound on the
return, comparing trajectories generated by different can-
didate policies πθ̂. In this particular application, the PG

method we use in our experiments is finite differences [11]
(FD) which optimizes the return directly.

3.2 Finite Differences for Policy Search
The Finite Differences method [11], which has shown past

success in robotic control, optimizes the policy πθ directly
by computing small changes ∆θ in the policy parameters
that will increase the expected reward. This process esti-
mates the expected return for each policy parameter varia-
tion (θm + ∆θp) given the sampled trajectories via

∆Ĵp ≈ J (θm + ∆θp)− Jref , (1)

where the estimate is taken over n small perturbations in
the policy parameters {∆θp}np=1, the policy parameters at
timestep m are given by θm, and Jref is a reference return,
which is usually taken as the return of unperturbed parame-
ters J (θ). The FD gradient method then updates the policy
parameters, following the gradient of the expected return J
with a step-size δ, as given by

θm+1 = θm + δ∇θJ . (2)

For efficiency, we can estimate the gradient ∇θJ using
linear regression as

∇θJ ≈
(
∆ΘT∆Θ

)−1

∆ΘT∆Ĵp , (3)

where ∆Ĵp contains all the stacked samples of ∆Ĵp and ∆Θ
contains the stacked perturbations ∆θp. This approach is
sensitive to the type and magnitude of the perturbations,
as well as to the step size δ. Since the number of perturba-
tions needs to be as large as the number of parameters, this
method is considered to be noisy and inefficient for problems
with large sets of parameters [11], although we found it to
work well and reliably in our setting.

The process is capable of optimizing a policy for a single
RL task via repeatedly sampled trajectories (n trajectories
for each m ∈ {1, . . . ,M} iteration). In order to share infor-
mation between different policies that are learned consecu-
tively, we incorporate the PG learning process using FD into
a lifelong learning setting, as described next.

4. LIFELONG MACHINE LEARNING
In this section, we describe the framework we use to share

knowledge between multiple, consecutive tasks.

4.1 Problem Setting
In the lifelong learning setting [19, 24], the learner opti-

mizes policies for multiple tasks consecutively, rapidly learn-
ing each new task policy by building upon its previously
learned knowledge. At each time step, the learner observes a
task Z(t), represented as an MDP 〈X (t),A(t), P (t), R(t), γ(t)〉,
building on top of the knowledge learned from previous tasks.
The task Z(t) may be new, or it may be a repetition of a
known task. After observing T tasks (1 ≤ T ≤ Tmax), the
goal of the learner is to optimize policies for all known tasks
{Z(1), . . . ,Z(T)} without knowing a priori the total number
of tasks Tmax , their order, or their distribution.

In our application, we use a centralized lifelong learner
that is shared between multiple robots; each task corre-
sponds to an RL problem for an individual robot. The policy
πθ(t) for task Z(t) is parameterized by θ(t) ∈ Rd. To facil-
itate transfer between the task policies, we assume there is

137

a shared basis L ∈ Rd×k that underlies all policy parameter
vectors, and that each θ(t) can be represented as a sparse lin-
ear combination of the basis vectors, given by θ(t) = Ls(t),
with coefficients s(t) ∈ R. Research has shown this factor-
ized model to be effective for transfer in both multi-task [13,
18] and lifelong learning [19] settings.

4.2 Lifelong Learning with Policy Gradients
In our previous work [5], we developed an efficient algo-

rithm for learning in this lifelong setting with policy gra-
dients, known as PG-ELLA. Here, we briefly review this
algorithm, which we apply to the multi-robot setting in our
experiments. For details, please see the original paper. The
one major difference from our previous work is that we em-
ploy Finite-Difference methods as the base learner in this pa-
per; our previous work used episodic REINFORCE [26] and
natural actor critic [17]. We found FD to be easier to tune
and produced better results for our application. We believe
the improvement comes from optimizing the true objective
function rather than a lower bound. Note that there are no
guarantees on the tightness of the PG lower bound, and a
complicated nonlinear policy may produce an optimum that
is very far from the lower bound.

The lifelong learner’s goal of optimizing all known policies
after observing T tasks is given by the multi-task objective:

argmin
L,S

1

T

∑

t

[
−J

(
θ(t)
)

+ λ
∥∥∥s(t)

∥∥∥
1

]
+ µ‖L‖2F , (4)

where S =
[
s(1) · · · s(T)

]
is the matrix of all coefficients, the

L1 norm ‖ · ‖1 enforces sparsity of the coefficients, and the
Frobenious norm ‖ · ‖F regularizes the complexity of L with
regularization parameters µ, λ ∈ R. To solve Equation 4
efficiently, PG-ELLA: 1.) replaces J (·) with an upper bound
(as done in typical PG optimization), 2.) approximates the
first term with a second-order Taylor expansion around an
estimate α(t) of the single-task policy parameters for task
Z(t), and 3.) optimizes s(t) only when training on task Z(t).
These steps reduce the learning problem to a series of online
update equations that constitute PG-ELLA [5]:

s(t) ← arg min
s

∥∥∥α(t) −Ls
∥∥∥
2

Γ(t)
+ µ ‖s‖1 , (5)

A←A+
(
s(t)s(t)T

)
⊗ Γ(t) , (6)

b←b+ vec
(
s(t) ⊗

(
α(t)TΓ(t)

))
, and (7)

L←mat

((
1

T
A+ λIl×dθ,l×dθ

)−1
1

T
b

)
, (8)

where ‖v‖2A = v>Av, Γ(t) is the Hessian of the PG lower

bound on J (α(t)), ⊗ is the Kronecker product operator,
Im,n is the m×n identity matrix, andA and b are initialized
to be zero matrices. PG-ELLA is given as Algorithm 1.

5. DISTURBANCE REJECTION FOR
ROBOTICS VIA LIFELONG LEARNING

This paper’s goal is to present our progress adapting PG-
ELLA to learn policies for robotic control, using simulated
TurtleBot 2’s in ROS. In our previous work, PG-ELLA was
only ever evaluated on the control of simple dynamical sys-
tems with well-known models, such as inverted pendulums.

Algorithm 1 PG-ELLA (k, λ, µ) [5]

1: T ← 0
2: A← zerosk×d,k×d, b← zerosk×d,1
3: L← RandomMatrixd,k
4: while some task Z(t) is available do
5: if isNewTask(Z(t)) then
6: T ← T + 1

7:
(
T(t), R(t)

)
← getRandomTrajectories()

8: else
9:

(
T(t), R(t)

)
← getTrajectories

(
α(t)

)

10: A← A−
(
s(t)s(t)T

)
⊗ Γ(t)

11: b← b− vec
(
s(t)T ⊗

(
α(t)TΓ(t)

))

12: end if
13: Compute α(t) and Γ(t) from T(t) using PG

14: s(t) ← arg mins

∥∥∥α(t) −Ls
∥∥∥
2

Γ(t)
+ µ ‖s‖1

15: A← A +
(
s(t)s(t)T

)
⊗ Γ(t)

16: b← b + vec
(
s(t)T ⊗

(
α(t)TΓ(t)

))

17: L← mat
((

1
T

A + λIk×d,k×d
)−1 1

T
b
)

18: for t ∈ {1, . . . , T} do: θ(t) ← Ls(t)

19: end while

Specifically, we focus on the well-known problem of distur-
bance rejection in robotics. In disturbance rejection, it is as-
sumed that the nominal dynamics of the plant (i.e., system)
are additively disturbed by a signal ω. The system dynam-
ics are given by ẋ = f(x) + ω, where f : Rdx × R → Rdx ,
and ω ∈ Rdx . The goal is to determine the control input
that minimizes the effect of the disturbance in the return
function, so that the plant can execute this task.

There are well-known optimal control [8, 14] techniques
to solve this problem, if there is an available mathematical
model. However, if such a model is not available, or there is
a partial knowledge of the model, formal solutions are not
effective. RL offers one alternative solution to this prob-
lem, but in a single-task setting, it would require numerous
interactions with the environment to learn an effective con-
trol policy to compensate for the disturbance. However, in
a lifelong learning setting, the learner could build upon its
existing knowledge in controlling other systems (each with
their own disturbances) to rapidly learn a control for a sys-
tem with a novel disturbance. We assume that the learner
attempts to optimize control policies for a set of robots, all of
which have the same nominal dynamics, given by ẋ = f(x).
Each robot is affected by a different disturbance function
ω(t). All ω(t)’s share the same structure but different pa-
rameters, e.g., all the disturbances are constant but differ-
ent, are sinusoidal with different phases or amplitudes, etc.

Lifelong machine learning takes advantage of the potential
for knowledge transfer among different tasks. After learning
how to compensate for the disturbance without requiring a
mathematical model, a general structure of the policy can
be proposed. Then a reward function is designed so that
the lifelong learner penalizes the effect of the disturbance
over either a realistic simulated robot or an actual one. In
the next section, we present our preliminary application of
lifelong learning to this problem of robotic control under
disturbances.

138

6. EXPERIMENTS
This section describes our initial experiments applying

lifelong learning to the problem of disturbance rejection for
robotics, using the TurtleBot 2 platform [3] (Figure 1a). In
order to simulate a wide variety of TurtleBots, each with
their own disturbances, we conducted the experiments us-
ing the high-fidelity Gazebo simulator [1, 2]. However, our
experimental setup allows us to use the same code in both
simulation and on physical TurtleBots. The implementation
of our approach uses Python and the Hydro version of ROS.

In our disturbance rejection scenario, we focused on learn-
ing control policies for driving the TurtleBots to a goal lo-
cation as they experience disturbances in their wheel ac-
tuators. This disturbance emulates a bias on the angular
velocity of each robot that forces the robot to compensate
for the induced failure. Note that this type of disturbance
in actuation is common in physical robots and autonomous
ground vehicles, stemming from a variety of sources, such
as calibration issues, wear in the drive train, or interference
from debris. To simulate these disturbances, we induce a
random and constant disturbance to the control signal that
is drawn uniformly from [−0.1, 0.1] and measured in m/s
for each robot. These limits were selected to provide a large
noise that was still within the bounds of the TurtleBot con-
trol system. Although we use a constant difference for now,
the difficulty of the learning problem can easily be increased
later by introducing time-varying stochastic disturbances.

We assume little knowledge of the TurtleBot’s dynam-
ics. In our application, each robot’s state is defined as
x = (ρ, γ, ψ)T, with ρ, γ and ψ as illustrated in Fig. 1b.
To extract state features for learning, we use the following
nonlinear transformation of the position and heading angle,

φ(x) =




ρ cos(γ)
γ

cos(γ) sin(γ)
γ

(γ + ψ)

1


 . (9)

Given the stochastic policy πθ(t) ∼ N (a(t),Σ) for the t-

th TurtleBot, the control action is then specified by a(t) =

θ(t)
T
φ(x) = (u,w)T where u and w are the linear and an-

gular velocities of the robots. This particular choice of non-
linear transformation is inspired by a simplified kinematic
model for unicycle-like vehicles in polar coordinates [4]. In
this model, the state space is given by X ⊂ R3 and the
action space is described by A ⊂ R2. This simplified kine-
matics model ignores contributions to the dynamics of the
system from the robot’s mass, damping and friction coeffi-
cients, as well as inputs such as forces and torques.

In these preliminary experiments, we use FD [11] as the
base learner in PG-ELLA for its simplicity and good per-
formance in simulation, despite its known stability issues
(which we did not experience). In future work, we plan to
compare this approach with different base learners, such as
natural actor critic [17] and episodic REINFORCE [26].

6.1 Methodology
We generated 20 simulated TurtleBots, each with a differ-

ent constant disturbance and a unique goal, both selected
uniformly. This number of robots provided a large task di-
versity, while still being small enough to simulate practically.
We learn the tasks one at a time.

We used FD as our PG method to train each robot’s ini-

(a) TurtleBot

ψ

γ

ρ X

Y

w
u

}{G

}{P

Initial

Final

(b) State variables

Figure 1: (a) The TurtleBot 2 model in Gazebo, and (b) its
state variables in the simplified go-to-goal problem.

tial policy for M = 20 iterations with n = 15 roll-outs per
iteration and H = 50 time steps per roll-out. If the robot
reached the goal in less than 50 time steps, the experiment
continues to run to completion ensuring that a good policy
reaches the goal and stops. These initial policies were then
used as the α(t)’s for PG-ELLA. Note that all systems in
our experiment require more than 20 iterations to converge
to a good controller, so subsequent policy improvement is
essential for decent performance. The number of roll-outs
and time steps were selected to allow for successful learning
while minimizing the runtime.

PG-ELLA trains the shared knowledge repository L and
sparse policy representations s(t) using the update equations
given by Equations 5–8. Tasks were encountered randomly
with repetition and learning stopped once every task was ob-
served once. For our experiments, we approximate the Hes-
sian with the identity matrix because it was found to work
well in practice and reduced the number of rollouts. For the
parameters unique to PG-ELLA, we use k = 8 columns in
the shared basis, and use sparsity coefficient µ = 1 × 10−3

and regularization coefficient λ = 1 × 10−8. These coeffi-
cients were tuned manually, and were found to be relatively
easy to tune, being largely insensitive to changes within an
order of magnitude. It is worth noting that similar perfor-
mance was shown for k ∈ {4, . . . , 12} and k = 8 was selected
as the mean. The learning rate was set to δ = 1× 10−6 and
the standard deviation of the policy was set to σ = 0.001.

Figure 2 compares the reward for policies learned by PG-
ELLA against PG, averaged over all 20 robots over 6 simula-
tion trials. We start measuring performance at 20 iterations,
since the initial seed policies for PG-ELLA were learned us-
ing those first 20 iterations; we then plot the learning curves
as the polices are improved by either FD or PG-ELLA for
an additional 80 learning iterations. We see that PG-ELLA
is successfully able to reconstruct the control policies and
provide a slight improvement in performance through posi-
tive transfer. Figure 3 depicts the gain in reward, showing
positive transfer between tasks. Although these preliminary
results show only a slight improvement currently, we suspect
further refinements will enable us to achieve larger transfer.

7. CONCLUSIONS
We demonstrated the use of lifelong learning for distur-

bance rejection on TurtleBots. This preliminary work is
intended to lay the foundation for fault-tolerant control in

139

Iteration

20 40 60 80 100

R
e
w

a
r
d

-110

-105

-100

-95

-90

-85

-80

-75

PG-ELLA

PG

Figure 2: Learning curves for PG and PG-ELLA using a
finite-difference base learner. Using PG-ELLA to transfer
information between tasks improves performance over PG.

Iteration
20 40 60 80 100

C
h

a
n

g
e

 i
n

 R
e

w
a

rd

-2

0

2

4

6

8

Figure 3: The positive transfer achieved by lifelong learning.

multi-agent systems. The results show that PG-ELLA can
be successfully implemented on simulated and complex 3D
environments, yielding an improvement over standard PG
methods. This suggests that PG-ELLA can benefit real
robotic systems. The application to real TurtleBots and
quadrotors is part of our future research agenda.

Acknowledgments
Research at Penn was partially supported by grants ONR
N00014-11-1-0139 and AFRL FA8750-14-1-0069. Research
at Washington State University was supported in part by
grants AFRL FA8750-14-1-0069, AFRL FA8750-14-1-0070,
NSF IIS-1149917, NSF IIS-1319412, USDA 2014-67021-22174,
and a Google Research Award.

REFERENCES
[1] Gazebo. http://gazebosim.org/, 2016.

[2] Ros.org: Powering the world’s robots. [Online]:
http://www.ros.org/, 2016.

[3] TurtleBot 2. http://www.turtlebot.com/, 2016.

[4] M. Aicardi, G. Casalino, A. Balestrino, & A. Bicchi.
Closed loop smooth steering of unicycle-like vehicles.
In Proc. of the IEEE Conference on Decision and
Control, pp. 2455–2458, 1994.

[5] H. Bou Ammar, E. Eaton, & P. Ruvolo. Online
multi-task learning for policy gradient methods.

International Conference on Machine Learning, 2014.

[6] H. Bou Ammar, E. Eaton, J. M. Luna, & P. Ruvolo.
Autonomous cross-domain knowledge transfer in
lifelong policy gradient reinforcement learning.
International Joint Conference on Artificial
Intelligence, 2015.

[7] C. G. Cassandras & S. Lafortune. Introduction to
Discrete Event Systems, 2nd ed. Springer, NY, 2008.

[8] P. Dorato, C. Abdallah, & V. Cerone. Linear
Quadratic Control. Krieger, 2000.

[9] H. Khalil. Nonlinear Systems. Prentice Hall, 2002.

[10] A. Kleiner, M. Dietl, & B. Nebel. Towards a life-long
learning soccer agent. In RoboCup 2002: Robot Soccer
World Cup VI, pp. 126–134. Springer, 2002.

[11] J. Kober, J. A. Bagnell, & J. Peters. Reinforcement
learning in robotics: A survey. The International
Journal of Robotics Research, July, 2013.

[12] J. Kober & J. Peters. Policy search for motor
primitives in robotics. Advances in Neural Information
Processing Systems, pp. 849–856, 2009.

[13] A. Kumar & H. Daume III. Learning task grouping
and overlap in multi-task learning. International
Conference on Machine Learning, 2012.

[14] F. L. Lewis & V. L. Syrmos. Optimal Control. John
Wiley & Sons, 3rd edition, 2012.

[15] J. M. Luna, C. T. Abdallah, & G. Heileman.
Performance optimization and regulation for multitier
servers. In Proc. of IEEE International Conference on
Decision and Control, pp. 1026–1032, 2015.

[16] N. S. Nise. Control Systems Engineering. John Wiley
& Sons, 7th edition, 2010.

[17] J. Peters & S. Schaal. Natural actor-critic.
Neurocomputing, 71(7):1180–1190, 2008.

[18] B. Romera-Paredes, H. Aung, N. Bianchi-Berthouze,
& M. Pontil. Multilinear multitask learning.
International Conference on Machine Learning,
pp. 1444–1452, 2013.

[19] P. Ruvolo & E. Eaton. ELLA: An efficient lifelong
learning algorithm. International Conference on
Machine Learning, 2013.

[20] R. S. Sutton & A. G. Barto. Reinforcement learning:
An introduction. MIT press, 1998.

[21] R. S. Sutton, D. A. McAllester, S. P. Singh, &
Y. Mansour. Policy gradient methods for
reinforcement learning with function approximation.
Advances in Neural Information Processing Systems,
99:1057–1063, 1999.

[22] M. E. Taylor & P. Stone. Transfer learning for
reinforcement learning domains: A survey. Journal of
Machine Learning Research, 10:1633–1685, 2009.

[23] S. Thrun. Is learning the n-th thing any easier than
learning the first? Advances in Neural Information
Processing Systems, pp. 640–646, 1996.

[24] S. Thrun & T. M. Mitchell. Lifelong robot learning.
Springer, 1995.

[25] B. Urgaonkar, G. Pacifi, P. Shenoy, M. Spreitzer, &
A. Tantawi. Analytic modeling of multitier internet
applications. ACM Trans. on the Web, 1(1), May 2007.

[26] R. J. Williams. Simple statistical gradient-following
algorithms for connectionist reinforcement learning.
Machine learning, 8(3-4):229–256, 1992.

140

Outlook: Using Awareness to Promote Richer, More
Human-Like Behaviors in Artificial Agents

Logan Yliniemi
University of Nevada, Reno

logan@unr.edu

Kagan Tumer
Oregon State University

kagan.tumer@oregonstate.edu

ABSTRACT
The agents community has produced a wide variety of compelling
solutions for many real-world problems, and yet there is still a sig-
nificant disconnect between the behaviors that an agent can learn
and those that exemplify the rich behaviors exhibited by humans.
This problem exists both with agents interacting solely with an en-
vironment, as well as agents interacting with other agents. The so-
lutions created to date are typically good at solving a single, well-
defined problem with a particular objective, but lack in generaliz-
ability.

In this work, we discuss the possibility of using an awareness
framework, coupled with the optimization of multiple dynamic ob-
jectives, in tandem with the cooperation and coordination concerns
intrinsic to multiagent systems, to create a richer set of agent behav-
iors. We propose future directions of research that may lead toward
more-human capabilities in general agent behaviors.

1. INTRODUCTION
Agents don’t act like humans. To a certain extent, this is a desir-

able trait. Humans can be seen as irrational, moody, and on occa-
sion downright unpleasant.

The agent-based research community has developed compelling
solutions for a wide variety of problems, ranging from systems to
catch poachers [50] to robotic soccer [3] to stock trading [4] to air
traffic management [46, 51], space exploration [33, 52], and many
others. However, the solutions produced by the agent research com-
munity don’t tend to resemble the human decision making process.

Research in this matter in the artificial intelligence community
has existed for many decades, with a number of different forms.
Common sense [27, 28, 29], context and awareness [5, 13, 14, 39]
and lifelong learning [8, 45], are all different instantiations of this
concept, which at its core is trying to capture the incredible flexibil-
ity and often (apparent) unpredictability of human decision making.

This is not to say that the human way of thinking is somehow
superior to agent-based reasoning, but instead is to ask why we
cannot achieve this in addition to the advantages that agents have
in solving complex problems.

In this work we posit that there may be two prongs which form
a very simple answer: first, that the solutions simply do not exist
within the paradigm that we, as a community, have been using to
solve these problems; and second, that rich decision making re-
quires a broader sense of awareness of one’s environment and its
meaning, which has not yet received research attention.

At their most basic, most papers in the field produce some form
of agent to solve some problem. Over the years, we’ve created
more-and-more impressive agents to solve increasingly difficult prob-
lems. This is the tried and true framework for agent-based research.
Find a problem, and specifically tailor an agent-based algorithm to

solve this problem.
Despite, or possibly because of these successes, the community

has not made significant steps toward the richer set of behaviors that
humans exhibit on an everyday basis. Perhaps it is not the pursuit of
a particularly impressive agent to solve a particularly difficult task
which will lead us toward agents which exhibit these rich behav-
iors we seek, but instead these behaviors may require a paradigm
change.

This type of creative barrier is one that is mirrored in another
field: optimization. Many optimization techniques have been de-
veloped for a wide variety of optimization problems, but when op-
timizing a single value, there are only so many behaviors that can
be described this way, and thereby discovered by a single-objective
optimization. In recent years, complex optimization problems are
not solved by an excessively impressive optimizer solving a dif-
ficult problem, but instead, through a different paradigm. Multi-
objective optimization offers a much richer set of behaviors that
describes a more complete set of desirable behaviors a system may
exhibit [30, 34].

To a certain extent, this is a leap that the agent-based research
community is and has been making. We’ve discovered that some
of our techniques from single-objective problems are applicable to
multi-objective problems [53, 56], and even that creating a multi-
objective problem can make the single-objective problems easier to
solve [6, 7].

However, in this work we argue that the crux of the issue does not
lie in considering agent-based problems as multi-objective prob-
lems, as this only addresses a portion of the larger issue. We posit
that human decision making can be reasonably modeled by a multi-
objective process, with constantly-shifting, dynamic, non-linear pri-
orities. We pose a series of human experiences that illustrate this
point, and use these experiences to form a paradigm through which
each of these issues can be addressed by the agent-based research
community.

The remainder of this work is organized as follows: we begin
in Section 2 by offering some background on multi-objective op-
timization, since this is a central tenet of our outlook. We then
identify a series of human experiences in Section 3 that support the
dynamic multi-objective model of a human. In Section 4 we be-
gin building an agent-based framework that can reflect this process
and identify some portions of the work that are being done. Finally,
in Section 5, we conclude this work with a challenge to the agent
community to reach this vision.

2. BACKGROUND: OPTIMIZATION
Within the context of this work, it is important to understand

the beginnings of multi-objective optimization (Section 2.1), its
modern presence (Section 2.2), and how the form of the reward

141

can change the behavior (Section 2.3). However, we begin by dis-
cussing the general concept of optimization.

The core concept of single objective optimization is to choose a
set of parameters which you have control over, ~x, such that you can
either minimize or maximize a value you can’t directly control, y,
through some form of functional mapping y = f(~x). f(~x) can be
nonlinear, discontinuous, stochastic, and difficult or expensive to
sample, which form some of the core issues that has kept the field
of optimization vibrant and active for many years.

2.1 History of Multi-Objective Optimization
Though many concepts in the field of multi-objective problem

solving are named after Vilfredo Pareto, we traced the origins of
the field beyond Pareto, to Edgeworth [11].

Edgeworth establishes that, given the choice between a large
quantity of good A and a small quantity of good B, or a small
quantity of good A and a large quantity of good B, an individual
might be indifferent to which set of goods he receives. This estab-
lishes the concept of an indifference curve (a curve along which
one combination of goods is not preferred to another combination
also located on the curve), and also to the concept of a preference
curve, which lies perpendicular to the indifference curve.

Pareto solidified the study of the field. He discusses a concept
that he calls ophelimity, which can be roughly associated with eco-
nomic use or utility, which he defines as follows [31, 32]:

For an individual, the ophelimity of a certain quantity
of a thing, added to another known quantity (it can
be equal to zero) which he already possesses, is the
pleasure which this quanitity affords him

Pareto makes a strong case that the goal of an individual is to
constantly increase their personal ophelimity as far as is feasible.
Combining the works of Edgeworth and Pareto, this involves the
individual moving along their personal preference curve, which sits
perpendicular from his indifference curve, and may be nonlinear.

2.2 Multi-Objective Optimization
Multi-objective optimization is an extension to the single-objective

optimization process, where the formulation instead is to maximize
or minimize (or some mixture of the two) a vector of solutions
~y = f(~x). Each individual element of ~y can be optimized simulta-
neously in the formulation discussed in the previous section, but the

Objective 1 (maximize)

O
b

je
c

ti
ve

 2
 (

m
a

x
im

iz
e

)

A

B

C

X

Y

Z

feasible

boundary

Figure 1: Curve ABC forms an indifference curve, as does XYZ.
Curve XYZ represents an increase in ophelimity from ABC. Since
Y is the feasible solution with the highest ophelimity, it will be
preferred by the decision maker.

Objective 1 (maximize)

O
b

je
c

ti
ve

 2
 (

m
a

x
im

iz
e

)

Figure 2: A curve of indifference (solid) can change shape with
time. These changes may be easy to parameterize, or nonlinear and
difficult to describe, especially with higher numbers of objectives.

primary challenge in multi-objective optimization is the optimiza-
tion of all of these quantities simultaneously. This leads to an entire
set of solutions which form the Pareto optimal set on the border
between the feasible and infeasible portions of the objective space.
These Pareto optimal solutions describe the optimal tradeoffs be-
tween the objectives.

This expansion of the problem has led to many advances in opti-
mization, and has allowed solution of extremely complex optimiza-
tion problems, which would be very difficult to pose in a single-
objective sense [16, 21, 49].

Methods in multi-objective optimization vary widely. The sim-
plest and possibly widest-used is the linear combination, in which
the (often weighted) objectives are simply added together. This
is very computationally efficient, but has well-documented draw-
backs, and does not provide the richer behavior space we seek [2,
9, 25]. The linear combination can provide these richer behavior
spaces if combined with the concept of indifference, and if the ob-
jective space is transformed to guarantee specific types of convex-
ity [54, 55].

Other concepts include nonlinear schemes [18, 26], partition-
ing the search space [36, 37], and population-based methods in
which each population member is compared (pairwise) to each of
the other population members, to develop some fitness metric [10,
57].

2.3 Rewards Change Behaviors
Imbuing an adaptive agent with a richer set of possible behaviors

poses a difficult problem from the reward design standpoint. While
we can typically describe in common language what we would like
an agent to do, the act of translating this into a reward or evaluation
that leads to this behavior is a difficult process, especially when
what you want the agent to do changes over time, or uses on a con-
textual dependence of events that the agent might not have direct
awareness of or the capability to sense.

The design of such a framework, in which agents are able to
switch between different contexts and weigh different priorities or
objectives with different nonlinear weights, which are simultane-
ously time-varying, is an extremely difficult design problem with
the tools that exist to date.

However, in order to develop this richer set of behaviors that cap-
tures the flexibility and emergence that are characteristics of human
behaviors, we need to develop techniques for designing such time-
varying multiple simultaneous rewards, as well as the algorithms
that can use these.

142

3. SOME HUMAN EXPERIENCES
In this section we pose a series of cases which identify ways in

which the use of contextual clues can promote awareness and a shift
of mindset in human behaviors. We also present relatively simple
cases which are still best described by a combination of multiple
objectives.

3.1 Class Begins
Consider a group of students who have shown up a few minutes

before a class is due to begin, so they begin interacting with each
other about whichever topics are on their mind. There is some sig-
nal given, whether by an external cue or by the instructor, that class
is about to begin, and the students quiet and begin to listen to the
instruction being delivered. If a small group of students continues
to speak after class has begun, they may be quieted by their class-
mates.

This case serves to show that human awareness can lead to swift
changes in priorities, and that communication as well as passive
observation can lead to a person changing contexts. While this dy-
namic and the exact mechanics may change on a classroom-to-
classroom basis, there is a nearly universally understood "time for
outside of class matters" and "time for instruction", each with very
different priorities. The shift between these is rapid and shared
among the people involved.

3.2 A Loud Noise
Imagine that you are outdoors in a city center, and suddenly, you

hear a loud sound. Not only you, but everyone around you, will
turn toward the direction of the noise, to determine whether it was
a signal of a context switch. In this situation, Shaw states "Unless
the danger is very obvious, people often require secondary or con-
firmatory data before they will begin to react" [40].

Was it simply a car backfiring? Was it a siren? An auto acci-
dent? By gathering additional information, you’re able to make an
intelligent and rational decision about what to do next. Depend-
ing on what the additional information shows, your priorities might
rapidly shift back to (i) whatever they were previously, especially
if there is no perceived change in context; (ii) flight away from the
danger; or (iii) to help those in harm’s way.

This case serves to show that human awareness detects changes
in the environment which signal broader changes in context, and
that a change in context can lead to drastically different priorities,
which may vary between individuals. It also serves to show that
humans use supporting first-hand observations to verify a possible
context switch.

3.3 Socially Appropriate Navigation
Consider the simple act of trying to navigate through a crowded

hallway in a way that does not disturb those around you. This So-
cially Aware Navigation is a problem which humans readily solve
on a regular basis [15]. In order to properly address this problem,
though, you have many competing objectives. As a sample of a set
of possible priorities,

i) you are trying to navigate to your goal as quickly as possible
ii) you are trying not to physically disturb any other person along

the way
iii) you are trying to avoid walking through groups of people

talking with each other
iv) you are trying to expend minimal energy
v) you are trying to stay with your group members

vi) you are preoccupied with your thoughts
vii) you are trying to have courteous interactions
Depending on the details of your situation, your priorities are

going to be very different.

• Efficiency: If you’re having a tough day, perhaps you’re much
more concerned with (i) and (iv) than the remainders.

• A hall of coworkers: If the hall is filled with your colleagues,
you may prioritize (vii), along with (iii).

• Late for an important meeting: (i) may take precedence over
(iii), and you might put no priority at all on (iv).

• Absentminded: If other events are occupying your thoughts
and attention, you may implicitly place a higher priority on
(vi), and allow the others to take lower precedence.

• A foreigner: If you are in a foreign place and do not speak the
language, you might be more inclined to avoid interactions
and therefore prioritize (ii), (iii), and (v).

• A parent with small children: (v) likely takes very high pri-
ority, with a possible side of (ii) and (iii); you might simply
acknowledge that (i) and (iv) are not useful priorities.

• Inconsiderate others: If the people crowding the hallway are
not being considerate of the people making their way through,
perhaps (ii) will take a lower priority in your mind.

• Combination: These situations are not mutually exclusive,
and if you have a combination of these situations, you may
have some combination of the priorities of each.

All of these different sets of priorities are completely rational,
though they lead to vastly different courses of action. It is an incred-
ibly human trait that we each can look at the same situation, and,
based on our previous experiences and current priorities, come to
a different conclusion about the actions that should be taken. This
is also why it is so easy to think that someone else is making the
wrong choice in a situation. If we are weighing their actions and the
likely outcomes with our own priorities, then it is extremely likely
that they may appear irrational. They could be using a different pri-
oritization of the same objectives that we are considering, but it is
possibly more likely that they are trying to optimize an objective
that we haven’t even considered in the first place.

To compound this problem, interacting within the human envi-
ronment is an extremely information-limited problem. It is difficult,
even with prolonged shared experiences, to completely understand
the motivations and past experiences of those around us, which in-
herently guide their priorities within a situation. Finally, very dif-
ferent mindsets can lead to the same behaviors: an absentminded
person could behave similarly to one concerned only with their
path efficiency. They have very different motivations, and different
priorities as expressed above, but could exhibit similar observable
behaviors.

This case serves to show that with different sets of priorities,
different action sets can be seen as equally rational and reasonable.
Additionally, without thoroughly understanding an individual’s pri-
orities, judging the rationality of their actions is extremely difficult.

3.4 Falsely Shouting "Fire" in a Theatre
Consider, for a moment, the concept of a person entering into a

crowded theatre and shouting "Fire!" when there is none. For a mo-
ment, the theatre goers may briefly be confused, as the exclamation
does not fit into the context that they were expecting. Is this a part
of the play? Then, after a short time to process, each individual may
rapidly change their priorities, from maximizing their enjoyment to
minimizing their time inside the theatre. This process can happen
rapidly in parallel, creating a mass panic.

143

In a decision from 1919, the U.S. Supreme court noted that this
is one of the (very few) exceptions to free speech under the U.S.
constitution. To quote the decision: "The most stringent protection
of free speech would not protect a man in falsely shouting fire in
a theatre and causing a panic. It does not even protect a man from
an injunction against uttering words that may have all the effect of
force" [20].

This decision cites that the use of words may have all the effect
of force, and the reason for this is the rapid and extreme context
switching that would happen for each person sitting in the theatre.
It immediately places every person in the theatre in danger from the
circumstances that may arise from the mass exodus from the the-
atre by (reasonably) self-concerned patrons. In fact, simply shout-
ing fire has led to a loss of life in the panic of some situations [35,
48], whereas in other highly dangerous situations that actually in-
volved a large fire, no loss of life occurred [40].

This case serves to show that a human’s sense of context can be
manipulated by the actions of others, and that the sense of context
has a high impact on the actions of others: “all the effect of force".

4. TOWARD RICHER AGENT BEHAVIORS
In order to achieve rich behaviors such as these, a possible route

is to create a framework which has the same characteristics, both
within sensing the context and when it changes, and in the decision
making process once a context has been identified.

These characteristics are:
Context sensing
• Independent detection of a context change
• Inter-agent communication to facilitate context switching
• Sensory verification of a communicated context switch

Decision-making
• Event-dependent multiple priorities
• Priorities with nonlinear preference curves
• Varying priorities based on past experiences
• A strong change in behavior corresponding with changes in

context
In this section, we identify areas in which the MAS and AI com-

munities have made some steps toward imbuing agents with these
characteristics, and some possible future directions of research. This
is linked to over 3 decades of work [23, 24] in awareness, long term
autonomy, and common sense for artificial intelligence, but in this
section we look at the research with an eye toward using multi-
objective optimization with dynamically-changing priorities.

4.1 The Detection of Context Changes
Giving an agent awareness of context, which is broader than a

simple state representation, is an extremely large research prob-
lem. It is possible that contributions to such a detection method this
could come from sources like transfer learning [38, 43, 44] anomaly
detection [1, 17, 22], the detection of opponent policy switching in
non-stationary problems [12, 19, 47] or shared autonomy [41, 42].

Each of these problem types are ones in which the MAS and AI
community have many collective years of experience solving. In
the particular application of identifying context changes, we pro-
pose one avenue: since many candidate priorities must exist for the
richer behavior space that we seek, why not constantly track the
evaluations of these objectives, and use the past history as a litmus
test? If an agent takes an action and can predict a vector of rewards,
but receives a vastly different vector, it is very possible that a con-
text change has happened.

4.2 The Use of Context
Once a shift in context has been detected, the agent can suddenly

find itself in a world of uncertainty, and there are many research
questions to be addressed: how does the agent select its new set of
objectives from among the entire set it may consider? How does the
agent prioritize these objectives, and with what form of a preference
scheme? How can policy information be maintained across changes
in context, and still used in a constructive manner?

Again, the MAS and AI community has many collective years
of solving these types of problems. The selection of a new set of
priorities without excessive regret is in many ways similar to han-
dling a new opponent strategy in a competitive game. The prefer-
ence scheme can be built up based on what can be achieved within
the constraints of the new context. Outside knowledge can be incor-
porated with reward shaping. Policy information can be maintained
through transfer.

The incorporation of any combination of these at once is a large
research problem, which requires concerted effort on a community-
wide, collaborative level. It requires publishing work that requires
the knowledge of multiple sub-fields to properly review and under-
stand. It requires a level of risk. However, it also provides a sub-
stantial reward: a future agent that can not only solve a particularly
difficult problem, but can use a sense of awareness to situate it-
self within its environment, such that it can potentially solve many
problems despite (or due to) many changes in context along the
way.

5. CONCLUSION
In this work we have identified a challenge for the MAS and AI

community: the development of agents with a richer set of behav-
iors, which may be able to mimic the human decision making pro-
cess. We have identified, through a series of vignettes, some desir-
able aspects of the human decision making process, and provided a
paradigm through which an autonomous agent-based system might
be able to mimic these human behaviors, through the incorporation
of a sense of awareness into the agents. Such agents will be capa-
ble of detecting when changes in their environment, their interac-
tion with the environment, or actions of others indicate a change in
context, and use this to quickly change the set of priorities which
they consider. These agents will then consider their priorities with
some form of non-linear preference (and indifference), and take
actions based on these priorities and preferences. In order to im-
bue artificial agents with the flexibility and emergence associated
with human behaviors, we, as a community, need to develop each
of these techniques, with an eye toward integration with each of the
others.

REFERENCES
[1] A. Agogino and K. Tumer. Entropy based anomaly detection

applied to space shuttle main engines. In IEEE Aerospace
Conference, 2006.

[2] T. W. Athan and P. Y. Papalambros. A note on weighted
criteria methods for compromise solutions in multi-objective
optimization. Engineering Optimization, 27(155-176), 1996.

[3] S. Barrett and P. Stone. Cooperating with unknown
teammates in complex domains: A robot soccer case study of
ad hoc teamwork. In Proceedings of the Twenty-Ninth AAAI
Conference on Artificial Intelligence, January 2015.

[4] D. Bloembergen, D. Hennes, P. McBurney, and K. Tuyls.
Trading in markets with noisy information: An evolutionary
analysis. Connection Science, 27(3):253–268, 2015.

144

[5] P. Brézillon. Context in artificial intelligence: I. a survey of
the literature. Computers and artificial intelligence,
18:321–340, 1999.

[6] T. Brys, A. Harutyunyan, P. Vrancx, M. E. Taylor,
D. Kudenko, and A. Nowé. Multi-objectivization of
reinforcement learning problems by reward shaping. In
Neural Networks (IJCNN), 2014 International Joint
Conference on, pages 2315–2322. IEEE, 2014.

[7] T. Brys, M. E. Taylor, and A. Nowé. Using ensemble
techniques and multi-objectivization to solve reinforcement
learning problems. In ECAI, pages 981–982, 2014.

[8] A. Carlson, J. Betteridge, B. Kisiel, B. Settles, E. R.
Hruschka Jr, and T. M. Mitchell. Toward an architecture for
never-ending language learning. In AAAI, volume 5, page 3,
2010.

[9] I. Das and J. E. Dennis. A closer look at drawbacks of
minimizing weighted sums of objectives for pareto set
generation in multicriteria optimization problems. Structural
Optimization, pages 63–69, 1997.

[10] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan. A fast
elitist multi-objective genetic algorithm: NSGA-II.
Evolutionary Computation, 6:182–197, 2002.

[11] F. Y. Edgeworth. Mathematical Psychics: An essay on the
application of mathematics to moral sciences. C. Kegan Paul
and Company, 1881.

[12] M. Elidrisi, N. Johnson, and M. Gini. Fast learning against
adaptive adversarial opponents. In Proceedings of the 11th
International Conference on Autonomous Agents and
Multiagent Systems, Valencia, Spain (November 2012), 2012.

[13] Thomas Erickson. Some problems with the notion of
context-aware computing. Communications of the ACM,
45(2):102–104, 2002.

[14] R. Fagin and J. Y. Halpern. Belief, awareness, and limited
reasoning. Artificial intelligence, 34(1):39–76, 1987.

[15] D. Feil-Seifer. Distance-based computational models for
facilitating robot interaction with children. Journal of
Human-Robot Interaction, 1(1), 2012.

[16] P. Flener, J. Pearson, M. Ågren, C. Garcia-Avello,
M. Celiktin, and S. Dissing. Air-traffic complexity resolution
in multi-sector planning. Journal of Air Transport
Management, 13(6):323–328, 2007.

[17] A. Ghosh and S. Sen. Agent-based distributed intrusion alert
system. Springer, 2004.

[18] I. Giagkiozis and P. J. Fleming. Methods for multi-objective
optimization: An analysis. Information Sciences,
293:338–350, 2015.

[19] P. Hernandez-Leal, E. Munoz de Cote, and L. E. Sucar. A
framework for learning and planning against switching
strategies in repeated games. Connection Science,
26(2):103–122, 2014.

[20] O. W. Holmes Jr. U.S. supreme court opinion: Schenck v.
United States, 1919.

[21] S. Jeyadevi, S. Baskar, C.K. Babulal, and M. W.
Iruthayarajan. Solving multiobjective optimal reactive power
dispatch using modified NSGA-II. International Journal of
Electrical Power & Energy Systems, 33(2):219–228, 2011.

[22] B. Kaluža, G. A. Kaminka, and M. Tambe. Detection of
suspicious behavior from a sparse set of multiagent
interactions. In Proceedings of the 11th International
Conference on Autonomous Agents and Multiagent
Systems-Volume 2, pages 955–964. International Foundation

for Autonomous Agents and Multiagent Systems, 2012.
[23] D. B. Lenat. Cyc: A large-scale investment in knowledge

infrastructure. Communications of the ACM, 38(11):33–38,
1995.

[24] D. B. Lenat, R. V. Guha, K. Pittman, D. Pratt, and
M. Shepherd. Cyc: toward programs with common sense.
Communications of the ACM, 33(8):30–49, 1990.

[25] R. T. Marler and J. S. Arora. The weighted sum method for
multi-objective optimization: new insights. Structural and
Multidisciplinary Optimization, 2009.

[26] R.T. Marler and J. S. Arora. Survey of multi-objective
optimization methods for engineering. Structural and
Multidisciplinary Optimization, 26:369–395, 2004.

[27] J. McCarthy. Programs with common sense. Defense
Technical Information Center, 1963.

[28] J. McCarthy. Generality in artificial intelligence.
Communications of the ACM, 30(12):1030–1035, 1987.

[29] J. McCarthy. Artificial intelligence, logic and formalizing
common sense. In Philosophical logic and artificial
intelligence, pages 161–190. Springer, 1989.

[30] A. Messac and P. D. Hattis. Physical programming design
optimization for high speed civil transport (HSCT). Journal
of Aircraft, 33(2):446–44, March 1996.

[31] V. Pareto. Manuale di Economia Politica. Piccola Biblioteca
Scientifica. Societa Editrice Libraria, 1906.

[32] V. Pareto. Manual of Political Economy. MacMillan Press
Ltd., 1927.

[33] M. Pěchouček and V. Mařík. Industrial deployment of
multi-agent technologies: review and selected case studies.
Autonomous Agents and Multi-Agent Systems,
17(3):397–431, 2008.

[34] R. Penn, E. Friedler, and A. Ostfeld. Multi-objective
evolutionary optimization for greywater reuse in municipal
sewer systems. Water research, 47(15):5911–592, 2013.

[35] L. A. Powe Jr. Searching for the false shout of fire. Const.
Comment., 19:345, 2002.

[36] H. Sato. Inverted PBI in MOEA/D and its impact on the
search performance on multi and many-objective
optimization. In Proceedings of the 2014 conference on
Genetic and evolutionary computation, pages 645–652.
ACM, 2014.

[37] H. Sato. MOEA/D using constant-distance based neighbors
designed for many-objective optimization. In Evolutionary
Computation (CEC), 2015 IEEE Congress on, pages
2867–2874. IEEE, 2015.

[38] S. Sen, M. Sekaran, and J. Hale. Learning to coordinate
without sharing information. In AAAI, pages 426–431, 1994.

[39] L. Serafini and P. Bouquet. Comparing formal theories of
context in ai. Artificial intelligence, 155(1):41–67, 2004.

[40] R. Shaw. Don’t panic: behaviour in major incidents. Disaster
Prevention and Management: An International Journal,
10(1):5–10, 2001.

[41] M. Tambe. Electric elves: What went wrong and why. AI
magazine, 29(2):23, 2008.

[42] M. Tambe, P. Scerri, and D. V. Pynadath. Adjustable
autonomy for the real world. Journal of Artificial
Intelligence Research, 17(1):171–228, 2002.

[43] M. E. Taylor, G. Kuhlmann, and P. Stone. Autonomous
transfer for reinforcement learning. In Proceedings of the 7th
international joint conference on Autonomous agents and
multiagent systems-Volume 1, pages 283–290. International

145

Foundation for Autonomous Agents and Multiagent
Systems, 2008.

[44] M. E. Taylor and P. Stone. An introduction to intertask
transfer for reinforcement learning. AI Magazine, 32(1):15,
2011.

[45] S. Thrun and T. M. Mitchell. Lifelong robot learning.
Springer, 1995.

[46] K. Tumer and A. Agogino. Distributed agent-based air traffic
flow management. In Proceedings of the 6th international
joint conference on Autonomous agents and multiagent
systems, page 255. ACM, 2007.

[47] Z. Wang, A. Boularias, K. Mülling, and J. Peters. Balancing
safety and exploitability in opponent modeling. In AAAI,
2011.

[48] M.F. Wendland. The calumet tragedy + death of a city in
northern michigan, 1913-1914. American Heritage,
37(3):39, 1986.

[49] H. Xu, Z. Zhang, K. Alipour, K. Xue, and X.Z. Gao.
Prototypes selection by multi-objective optimal design:
application to a reconfigurable robot in sandy terrain.
Industrial Robot: An International Journal, 38(6):599–613,
2011.

[50] R. Yang, B. Ford, M. Tambe, and A. Lemieux. Adaptive
resource allocation for wildlife protection against illegal
poachers. In Proceedings of the 2014 international
conference on Autonomous agents and multi-agent systems,
pages 453–460. International Foundation for Autonomous
Agents and Multiagent Systems, 2014.

[51] L. Yliniemi, A. K. Agogino, and K. Tumer. Evolutionary
agent-based simulation of the introduction of new
technologies in air traffic management. Genetic and
Evolutionary Computation Conference (GECCO), 2014.

[52] L. Yliniemi, A. K. Agogino, and K. Tumer. Multirobot
coordination for space exploration. AI Magazine,
4(35):61–74, 2014.

[53] L. Yliniemi and K. Tumer. Multi-objective multiagent credit
assignment through difference rewards in reinforcement
learning. In Simulated Evolution and Learning, pages
407–418. Springer, 2014.

[54] L. Yliniemi and K. Tumer. PaCcET: An objective space
transformation to iteratively convexify the pareto front. In
10th International Conference on Simulated Evolution And
Learning (SEAL), 2014.

[55] L. Yliniemi and K. Tumer. Complete coverage in the
multi-objective PaCcET framework. In S. Silva, editor,
Genetic and Evolutionary Computation Conference, 2015.

[56] L. Yliniemi, D. Wilson, and K. Tumer. Multi-objective
multiagent credit assignment in nsga-ii using difference
evaluations. In Proceedings of the 2015 International
Conference on Autonomous Agents and Multiagent Systems,
pages 1635–1636. International Foundation for Autonomous
Agents and Multiagent Systems, 2015.

[57] E. Zitzler, M. Laumanns, and L. Thiele. SPEA2: Improving
the strength pareto evolutionary algorithm. Computer
Engineering, 3242(103), 2001.

146

